

Compact I/O Modules

AC Digital Modules 1769-IA8I, 1769-IA16, 1769-IM12, 1769-OA8, 1769-OA16

DC Digital Modules 1769-IG16, 1769-IQ16, 1769-IQ16F, 1769-IQ32, 1769-IQ32T, 1769-IQ6XOW4, 1769-ŎB8, 1769-OB16, 1769-OB16P, 1769-OB32, 1769-OB32T, 1769-OG16, 1769-OV16, 1769-OV32T

Contact Modules 1769-0W8, 1769-0W8I, 1769-0W16

Analog Modules 1769-IF4, 1769-IF4I, 1769-IF4XOF2, 1769-IF4FXOF2F, 1769-IF8, 1769-IF16C, 1769-IF16V, 1769-IR6, 1769-IT6, 1769-OF2, 1769-OF4, 1769-OF4CI, 1769-OF4VI, 1769-OF8C, 1769-OF8V

Speciality Modules 1769-ARM, 1769-ASCII, 1769-BOOLEAN, 1769-HSC

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication <u>SGI-1.1</u> available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

Allen-Bradley, Compact I/O, Rockwell Automation, Rockwell Software, RSLogix 500, RSLogix 5000, RSNetWorx for DeviceNet, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Preface	Additional Resources	9
	Chapter 1	
Install a 1769 Module	Before You Begin	. 11
	Hazardous Location Considerations	
	Environnements Dangereux	
	Install Summary	
	System Assembly	
	Minimum Spacing	
	Panel Mounting	
	DIN Rail Mounting	
	Replace a Module	
	Ground the Module	
	Wire the Module.	
	Label Terminals	
	Remove the Terminal Block	
	Wire the Terminal Block.	
	Wire Size and Terminal Screw Torque	
	Chapter 2	
Module Wiring	1769-IA8I	21
would willing	1769-IA16.	
	1769-IF4	
	1769-IF4I	
	1769-IF4XOF2	
	1769-IF4FXOF2F	
	1769-IF8	
	1769-IF16C	
	1769-IF16V	
	1769-IG16	
	1769-IM12	
	1769-IQ16	
	1769-IQ16F	
	1769-IQ32	
	1769-IQ32T	
	1769-IQ6XOW4	
	1769-IR6	
	1769-IT6	
	1769-OA8	
	1769-OA16	
	1769-OB8	
	1769-OB16	
	1769-OB16P	
	1769-OB32	
	1769-OB32T	

	1769-OF2	40
	1769-OF4	40
	1769-OF4CI	41
	1769-OF4VI	41
	1769-OF8C	42
	1769-OF8V	43
	1769-OG16	44
	1769-OV16	44
	1769-OV32T	
	1769-OW8	
	1769-OW8I	_
	1769-OW16	
	1769-ARM	
	1769-ASCII	
	1769-BOOLEAN	
	1769-HSC	
	1/0/-113C	40
	Chanter 2	
1/0 84 84	Chapter 3	- /
I/O Memory Mapping	1769-IA8I	
	Input Data File	
	1769-IA16	
	Input Data File	
	1769-IF4	
	Input Data File	
	Configuration Data File	
	1769-IF4I	
	Input Data File	
	Output Data File	58
	Configuration Data File	58
	1769-IF4XOF2	61
	Input Data File	61
	Output Data File	62
	Configuration Data File	63
	1769-IF4FXOF2F	65
	Input Data File	65
	Output Data File	66
	Configuration Data File	66
	1769-IF8	70
	Input Data File	
	Output Data File	
	Configuration Data File	
	Controller Tags for RSLogix 5000, Version 15 or Later	
	1769-IF16C	
	Input Data File	
	Output Data File	
	±	

Configuration Data File	. 81
1769-IF16V	. 86
Input Data File	. 86
Output Data File	
Configuration Data File	. 88
1769-IG16	
Input Data File	
Configuration File	
1769-IM12	
Input Data File	
1769-ÎQ16	
Input Data File	. 94
1769-ÎQ16F	
Input Data File	
Configuration File	
1769-IQ32	
Input Data File	
1769-ÎQ32T	. 96
Input Data File	
Configuration File	
1769-IQ6XOW4	
Input Data File	
Output Data File	
Configuration File	. 98
1769-IR6	
Input Data File	100
Configuration Data File	101
Module Configuration Word	
1769-IT6	104
Input Data File	104
Configuration Data File	
1769-OA8	107
Output Module's Input Data File	107
Output Data File	108
Configuration File	108
1769-OA16	110
Output Module's Input Data File	110
Output Data File	111
Configuration File	111
1769-OB8, Series A	113
Output Module's Input Data File	113
Output Data File	114
Configuration File	
1769-OB16, Series B	116
Output Module's Input Data File	116
Output Data File	117

Configuration Eile	117
Configuration File	
Output Module's Input Data File	
Output Data File	
Configuration File	
1769-OB32	
Output Module's Input Data File	
Output Data File	
Configuration File	
1769-OB32T	
Input Data File	
Output Data File	
Configuration File	
1769-OF2	
Input Data File	
Output Data File	
Configuration Data File	
1769-OF4	
Input Data File	132
Output Data File	132
Configuration Data File	133
1769-OF4CI	135
Input Data File	135
Output Data File	
Configuration Data File	
1769-OF4VI	
Input Data File	
Output Data File	
Configuration Data File	
1769-OF8C	
Input Data File	
Output Data File	
Configuration Data File	
Controller Tags for RSLogix 5000, Version 15 or Later	
1769-OF8V	
Input Data File	
Output Data File	
Configuration Data File	
Controller Tags for RSLogix 5000, Version 15 or Later	
Output Data	
Output Module's Input Data File	
Output Data File	
1769-OV16	
Output Module's Input Data File	
Output Module o Hiput Data I He	

	Output Data File	165
	Configuration File	
	1769-OV32T	
	Output Module's Input Data File	
	Output Data File	
	Configuration File	
	1769-OW8	
	Output Module's Input Data File	170
	Output Data File	171
	Configuration File	
	1769-OW8I	
	Output Module's Input Data File	
	Output Data File	
	Configuration File	
	1769-OW16	176
	Output Module's Input Data File	176
	Output Data File	
	Configuration File	
	1769-ARM	
	Input Data File	179
	1769-ASCII	
	Alternate Mode (One Channel at a Time) Input File	180
	Alternate Mode (One Channel at a Time) Output File	
	Simultaneous Mode (Two Channels) Input File	
	Simultaneous Mode (Two Channels) Output File	
	Configuration File	
	1769-BOOLEAN	187
	Input Data File	187
	Output Data File	
	Configuration Data File	
	1769-HSC	195
	Appendix A	
Module Replacement Parts		197
		•••• •//

Т'n	ы	_	~+	 ntei	-+-

Notes:

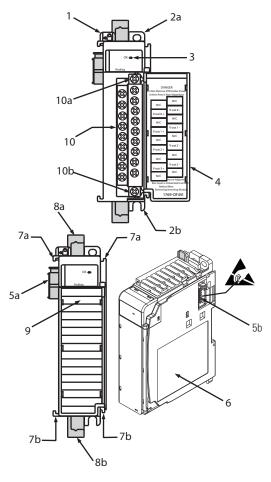
This manual describes how to install any 1769 Compact I/O module. Use this manual if you are responsible for designing, installing, programming, or troubleshooting control systems that use Compact I/O modules.

Additional Resources

These documents contain additional information concerning related Rockwell Automation products.

Resource	Description
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, http://www.ab.com	Provides declarations of conformity, certificates, and other certification details.
Compact I/O Thermocouple/mV Input Module User Manual, publication 1769-UM004	Provides a quick start and describes how to install, configure, and troubleshoot the CompactI/O Thermocouple/mV Input module.
Compact I/O RTD/Resistance Input Module User Manual, publication <u>1769-UM005</u>	Describes how to install, configure, program, operate, and troubleshoot a control system using the 1769-IR6 module.
Compact High-speed Counter Module User Manual, publication <u>1769-UM006</u>	Describes how to operate, install, wire, configure, and troubleshoot the 1769-HSC module.
Compact 8-Bit Low Resolution Analog I/O Combination Module User Manual, publication 1769-UM008	Provides a quick start and describes how to install, configure, program, operate, and troubleshoot a control system using the 1769 combination analog I/O module.
Compact I/O ASCII Module User Manual, publication 1769-UM012	Provides a quick start and describes how to install, configure, and troubleshoot the Compact I/O 1769-ASCII module.
Compact I/O Isolated Analog Modules User Manual, publication 1769-UM014	Describes how to install, configure, program, operate, and troubleshoot a control system using 1769 isolated analog I/O modules.
Compact I/O BOOLEAN Module User Manual, publication 1769-UM016	Describes how to install, configure, program, operate, and troubleshoot a control system using the 1769 BOOLEAN module.
Compact High Density Analog Input Modules User Manual, publication <u>1769-UM018</u>	Describes how to install, configure, and troubleshoot 1769 compact high density analog input modules.
Compact Combination Fast Analog I/O Module User Manual, publication 1769-UM019	Describes how to install, configure, and troubleshoot the 1769 combination analog I/O module.
Compact Analog Output Module User Manual, publication <u>1769-UM020</u>	Describes how to install, configure, and troubleshoot the 1769 analog I/O module.

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.


re		

Notes:

Install a 1769 Module

Before You Begin

Compact I/O is suitable for use in an industrial environment when installed in accordance with these instructions.

Item	Description	Item	Description
1	Bus lever (with locking function)	7a	Upper tongue-and-groove slots
2a	Upper panel mounting tab	7b	Lower tongue-and-groove slots
2b	Lower panel mounting tab	8a	Upper DIN rail latch
3	Module status LED	8b	Lower DIN rail latch
4	Module door with terminal identification label	9	Write-on label (user ID tag)
5a	Movable bus connector with female pins	10	Removable terminal block (RTB) with finger-safe cover
5b	Stationary bus connector with male pins	10a	RTB upper retaining screw
6	Nameplate label	10b	RTB lower retaining screw

North American Hazardous Location Approval

The following information applies when operating this equipment in hazardous locations.

Products marked "CL I, DIV 2, GP A, B, C, D" are suitable for use in Class I Division 2 Groups A, B, C, D, Hazardous Locations and nonhazardous locations only. Each product is supplied with markings on the rating nameplate indicating the hazardous location temperature code. When combining products within a system, the most adverse temperature code (lowest "T" number) may be used to help determine the overall temperature code of the system. Combinations of equipment in your system are subject to investigation by the local Authority Having Jurisdiction at the time of installation.

Informations sur l'utilisation de cet équipement en environnements dangereux.

Les produits marqués "CL I, DIV 2, GP A, B, C, D" ne conviennent qu'à une utilisation en environnements de Classe I Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livré avec des marquages sur sa plaque d'identification qui indiquent le code de température pour les environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le système sont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.

WARNING: Explosion Hazard

- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.
- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.
- Substitution of components may impair suitability for Class I, Division 2.
- If this product contains batteries, they must only be changed in an area known to be nonhazardous.

AVERTISSEMENT: Risque d'Explosion

- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher l'équipement.
- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à l'aide de vis, loquets coulissants, connecteurs filetés ou autres moyens fournis avec ce produit.
- La substitution de composants peut rendre cet équipement inadapté à une utilisation en environnement de Classe I, Division 2.
- S'assurer que l'environnement est classé non dangereux avant de changer les piles.

ATTENTION: Prevent Electrostatic Discharge

Electrostatic discharge can damage integrated circuits or semiconductors if you touch bus connector pins or the terminal block. Follow these guidelines when you handle the module:

- Touch a grounded object to discharge static potential.
- Wear an approved wrist-strap grounding device.
- Do not touch the bus connector or connector pins.
- Do not touch circuit components inside the module.
- Use a static-safe work station, if available.
- When not in use, keep the module in its static-shield box.

ATTENTION: Remove power before removing or inserting this module. When you remove or insert a module with power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage in these ways:

- Sending an erroneous signal to your system's field devices causing unintended machine motion
- Causing an explosion in a hazardous environment

Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

Hazardous Location Considerations

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, D or non-hazardous locations only. The following WARNING statement applies to use in hazardous locations.

WARNING: EXPLOSION HAZARD

- Substitution of components may impair suitability for Class I, Division 2.
- When in hazardous locations, turn off power before wiring or replacing modules.
- Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
- This product must be installed in an enclosure.
- All wiring must comply with N.E.C. article 501-4(b).

Environnements Dangereux

Cet équipement est conçu pour être utilisé dans des environnements de Classe 1, Division 2, Groupes A, B, C, D ou non dangereux. La mise en garde suivante s'applique à une utilisation dans des environnements dangereux.

WARNING: DANGER D'EXPLOSION

La substitution de composants peut rendre cet équipement impropre à une utilisation en environnement de Classe 1, Division 2.

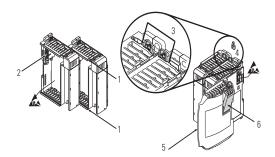
Ne pas remplacer de composants ou déconnecter l'équipement sans s'être assuré que l'alimentation est coupée et que l'environnement est classé non dangereux.

Ne pas connecter ou déconnecter des composants sans s'être assuré que l'alimentation est coupée ou que l'environnement est classé non dangereux. Ce produit doit être installé dans une armoire.

Install Summary

Follow these steps to install the module.

- 1. System Assembly.
- 2. Ground the Module.
- 3. Wire the Module.


This publication describes these steps in detail.

System Assembly

The module can be attached to the controller or an adjacent I/O module before or after mounting.

- For mounting instructions, see <u>Panel Mounting on page 15</u> or <u>DIN Rail Mounting on page 16</u>.
- To work with a system that is already mounted, see <u>Replace a Module on page 17</u>.

The following procedure shows you how to assemble the Compact I/O system.

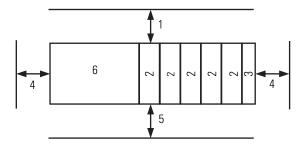
Item	Description	Item	Description
1	Tongue-and-groove slots	4	Bus lever
2	Bus connectors	5	End-cap terminator
3	Positioning tab	6	End-cap bus terminator

- 1. Disconnect power.
- **2.** Check that the bus lever of the module to be installed is in the unlocked (fully right) position.
- **3.** Use the upper and lower tongue-and-groove slots (1) to secure the modules together (or to a controller).
- **4.** Move the module back along the tongue-and-groove slots until the bus connectors (2) line up with each other.
- **5.** Push the bus lever back slightly to clear the positioning tab (3). Use your fingers or a small screwdriver.
- **6.** To allow communication between the controller and module, move the bus lever fully to the left (4) until it clicks.
- 7. Make sure the lever is locked firmly in place.

ATTENTION: When attaching I/O modules, it is very important that the bus connectors are securely locked together to make a proper electrical connection.

- **8.** Attach an end-cap terminator (5) to the last module in the system by using the tongue-and-groove slots as before.
- **9.** Lock the end-cap bus terminator (6).

IMPORTANT A 1769-ECR of


A 1769-ECR or 1769-ECL right or left end cap must be used to terminate the end of the serial communication bus.

ATTENTION: During panel or DIN rail mounting of all devices, be sure that all debris, such as metal chips and wire strands, is kept from falling into the module. Debris that falls into the module could cause damage on powerup.

Minimum Spacing

Maintain spacing from enclosure walls, wireways, and adjacent equipment. Allow 50 mm (2 in.) of space on all sides for adequate ventilation.



Item	Description	Item	Description
1	Тор	4	Side
2	Compact I/O modules	5	Bottom
3	End cap	6	Host controller

Panel Mounting

Mount the module to a panel by using two screws per module. Use M4 or #8 panhead screws. Mounting screws are required on every module.

Panel Mounting Using the Dimensional Template

Panel Mounting Procedure Using Modules as a Template

The following procedure lets you use the assembled modules as a template for drilling holes in the panel. If you have sophisticated panel mounting equipment, you can use the dimensional template provided on page 16. Due to module mounting hole tolerance, it is important to follow these procedures.

- 1. On a clean work surface, assemble no more than three modules.
- 2. Using the assembled modules as a template, carefully mark the center of all module-mounting holes on the panel.
- **3.** Return the assembled modules to the clean work surface, including any previously mounted modules.
- **4.** Drill and tap the mounting holes for the recommended M4 or #8 screw.
- **5.** Place the modules back on the panel, and check for proper hole alignment.
- **6.** Attach the modules to the panel using the mounting screws.
 - TIP If you are mounting more modules, mount only the last one of this group and put the others aside. This reduces remounting time during drilling and tapping of the next group.
- 7. Repeat steps 1...6 for any remaining modules.

DIN Rail Mounting

The module can be mounted using the following DIN rails:

- 35 x 7.5 mm (1.38 x 0.30 in.; EN 50 022 35 x 7.5)
- 35 x 15 mm (1.38 x 0.59 in.; EN 50 022 35 x 15)

Before mounting the module on a DIN rail, close the DIN rail latches. Press the DIN rail mounting area of the module against the DIN rail. The latches will momentarily open and lock into place.

Replace a Module

To replace the module while the system is mounted to a panel or DIN rail, follow these steps.

- 1. Remove power.
- **2.** On the module to be removed, use a screwdriver to remove the upper and lower mounting screws from the module or open the DIN latches.
- 3. Move the bus lever to the right to disconnect or unlock the bus.
- **4.** On the right-side adjacent module, move its bus lever to the right to disconnect it from the module to be removed.
- 5. Gently slide the disconnected module forward.

If you feel excessive resistance, check that the module has been disconnected from the bus, and that both mounting screws have been removed or DIN latches have been opened.

- **TIP** It may be necessary to rock the module slightly from front to back to remove it, or, in a panel-mounted system, to loosen the screws of adjacent modules.
- **6.** Before installing the replacement module, be sure that the bus lever on the module to be installed and the bus lever on the right-side adjacent module are in the unlocked (fully right) position.
- 7. Slide the replacement module into the open slot.
- **8.** Connect the modules together by locking (fully left) the bus levers on the replacement module and the right-side adjacent module.
- **9.** Replace the mounting screws or snap the module onto the DIN rail.

Ground the Module

This product is intended to be mounted to a well-grounded mounting surface, such as a metal panel. Additional grounding connections from the module's mounting tabs or DIN rail are not required unless the mounting surface cannot be grounded. Refer to the Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1, for additional information.

Wire the Module

Consider the following when wiring your system:

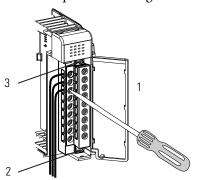
- Channels are isolated from each other.
- Use Belden 8761, or equivalent, shielded wire.
- Under normal conditions, the drain wire and shield junction must be connected to earth ground with a panel or DIN rail mounting screw at the analog I/O module end. Keep the shield connection to ground as short as possible.

TIP In environments where high frequency noise may be present, it may be necessary to ground the shield via a 0.1 μ F capacitor at the load end and also ground the module end without a capacitor.

- For optimum accuracy, limit overall cable impedance by keeping your cable as short as possible. Locate the I/O system as close to your sensors or actuators as your application will permit.
- Load resistance for each voltage output channel must be equal to or greater than $2K \Omega$.

ATTENTION: Miswiring of the module to an AC/DC source will damage the module.

Be careful when stripping wires. Wire fragments that fall into a module could cause damage at powerup. Once wiring is complete, make sure the module is free of all metal fragments.


Refer to Appendix 2 for wiring diagrams of each module.

Label Terminals

A removable, write-on label is provided with the module. Remove the label from the door, mark the identification of each terminal with permanent ink, and slide the label back into the door. Your markings (ID tag) will be visible when the module door is closed.

Remove the Terminal Block

To remove the terminal block, loosen the upper and lower retaining screws. The terminal block will back away from the module as you remove the screws. When replacing the terminal block, torque the retaining screws to 0.46 N•m (4.1 lb•in).

Item	Description
1	Wiring the finger-safe terminal block
2	Lower retaining screws
3	Upper retaining screws

Wire the Terminal Block

When wiring the terminal block, keep the finger-safe cover in place.

- 1. Loosen the terminal screws to be wired.
- 2. Route the wire under the terminal pressure plate.

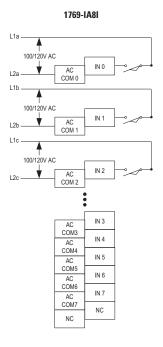
You can use the bare wire or a spade lug. The terminals will accept a 6.35 mm (0.25 in.) spade lug.

TIP The terminal screws are non-captive. You can use a ring lug [maximum 6.35 mm (0.25 in.) o.d. with a 3.53 mm (0.139 in.) minimum i.d. (M3.5)] with the module.

3. Tighten the terminal screw making sure the pressure plate secures the wire. Recommended torque when tightening terminal screws is 0.68 N•m (6 lb•in).

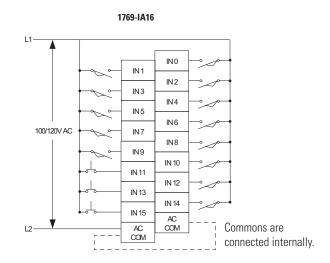
If you need to remove the finger-safe cover, insert a screwdriver into one of the square wiring holes and gently pry the cover off. If you wire the terminal block with the finger-safe cover removed, you will not be able to put it back on the terminal block because the wires will be in the way.

Wire Size and Terminal Screw Torque


Each terminal accepts one or two wires with the following restrictions.

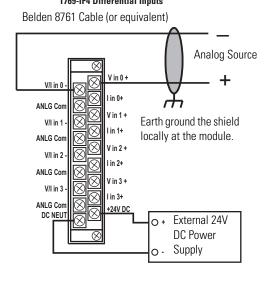
Wire Type		Wire Size	Terminal Screw Torque	Retaining Screw Torque
Solid	Cu-90 °C (194 °F)	#14#22 AWG	0.68 N • m (6 lb • in)	0.46 N • m (4.1 lb • in)
Stranded	Cu-90 °C (194 °F)	#16#22 AWG	0.68 N•m (6 lb•in)	0.46 N • m (4.1 lb • in)

Module Wiring

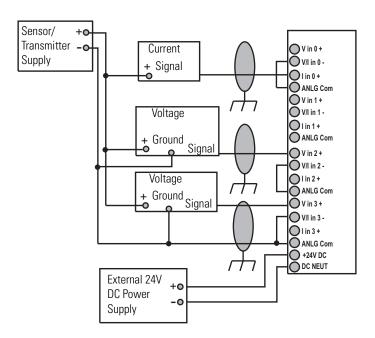

1769-IA8I

Compact individually-isolated 120V AC input module

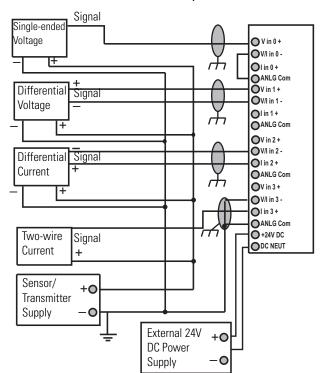
1769-IA16


Compact 120V AC input module

1769-IF4

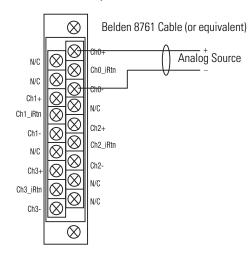

Compact voltage/current analog input module

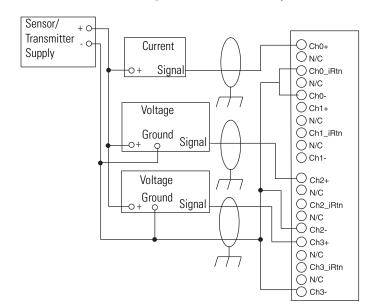
1769-IF4 Differential Inputs



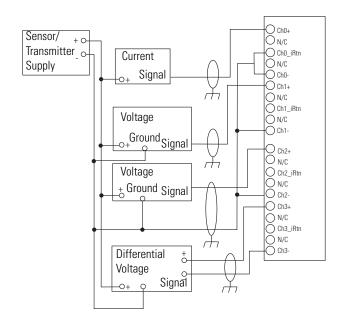
The external power supply must be rated Class 2, with a 24V DC range of 20.4...26.4V DC and 60 mA minimum. Series B and later modules support this option.

1769-IF4 Single-ended Sensor/Transmitter Inputs

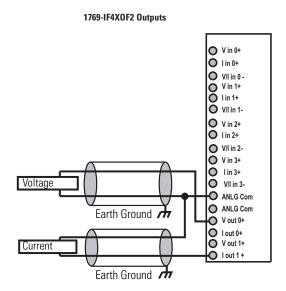

1769-IF4 Mixed Transmitter Inputs


1769-IF4I

Compact voltage/current analog, individually-isolated input module

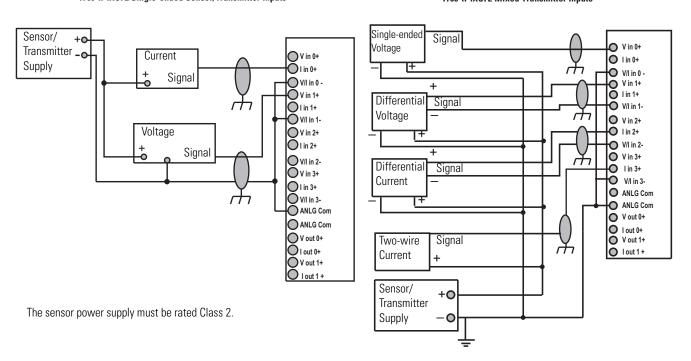

1769-IF4I Differential Inputs

1769-IF4I Single-ended Sensor/Transmitter Inputs



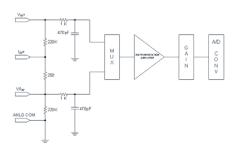
1769-IF4I Mixed Transmitter Inputs

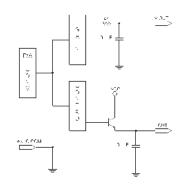
1769-IF4XOF2


Compact combination input/output analog module

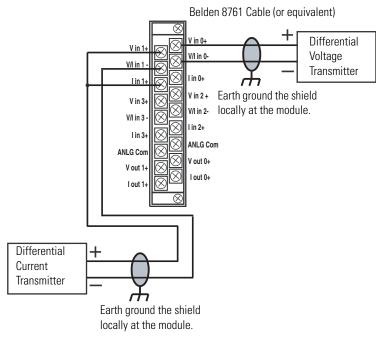
1769-IF4XOF2 Differential Inputs Belden 8761 Cable (or equivalent) Differential V in 1 V/I in 0-Voltage V/I in 1 Transmitter l in 0+ I in 1 Earth ground the shield V in 2 + V in 3 locally at the module. V/I in 2-V/I in 3 l in 2+ I in 3 ANLG Com ANLG Con V out 0+ V out 1 l out 0+ I out 1

1769-IF4X0F2 Single-ended Sensor/Transmitter Inputs

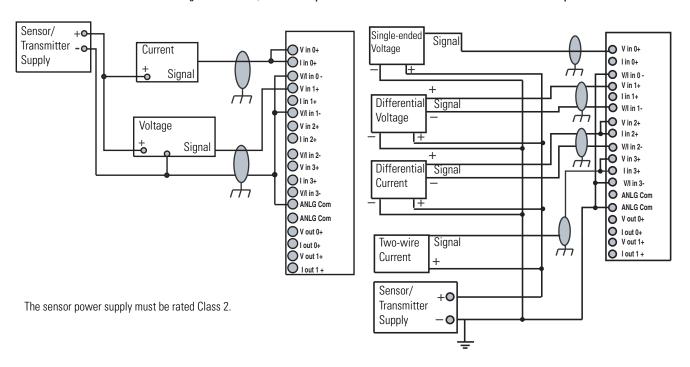

1769-IF4X0F2 Mixed Transmitter Inputs

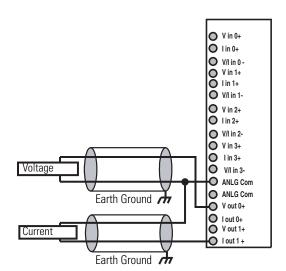

1769-IF4FX0F2F

Compact combination fast input/output analog module


Simplified Input Circuit Diagram

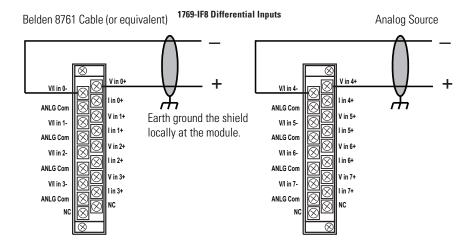
Simplified Output Circuit Diagram


1769-IF4FXOF2F Differential Inputs

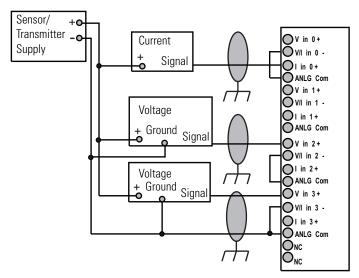

The sensor power supply must be rated Class 2.

1769-IF4FX0F2F Single-ended Sensor/Transmitter Inputs

1769-IF4FXOF2F Mixed Transmitter Inputs



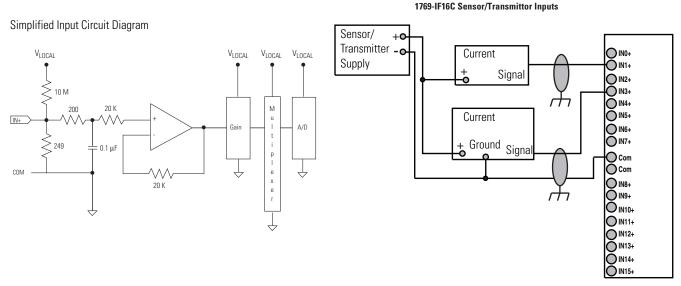
1769-IF4FXOF2F Outputs


1769-IF8

Compact voltage/current analog input module

1769-IF8 Single-ended Sensor/Transmitter Inputs

The sensor power supply must be rated Class 2.

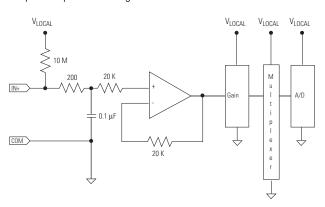


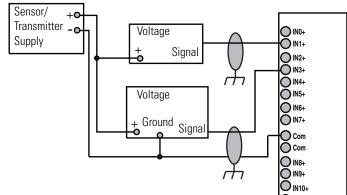
Wiring for channels 4...7 are identical.

1769-IF8 Mixed Transmitter Inputs The sensor power supply must be rated Class 2. Signal Single-ended **O** V in 0 + Voltage **○**V/I in 0 -OI in 0 + OANLG Com Differential Signal OV/I in 1 -Voltage Ol in 1+ ANLG Com **O**V in 2 + OV/I in 2 -Differential Signal OI in 2 + Current ANLG Com **O**V in 3 + **O**V/I in 3 -OI in 3 + OANLG Com 2-wire Signal ONC Current Wiring for channels 4...7 are identical. Sensor/ +0 Transmitter Supply

1769-IF16C

Compact current analog input module

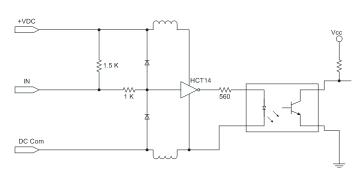

The sensor power supply must be rated Class 2.


O IN11+ O IN12+ O IN13+ O IN14+ O IN15+

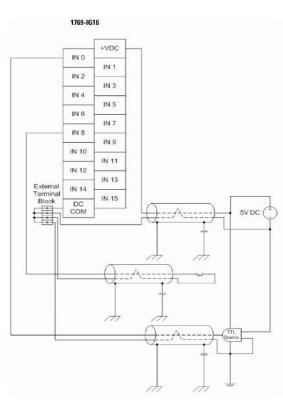
1769-IF16V

Compact voltage analog input module

Simplified Input Circuit Diagram

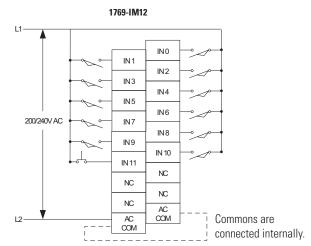

1769-IF16V Sensor/Transmittor Inputs

The sensor power supply must be rated Class 2.


1769-IG16

Compact TTL input module

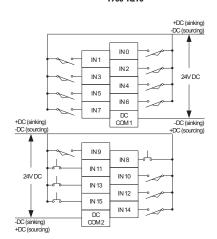
Simplified Input Circuit Diagram



- Use Belden 8761, or equivalent, shielded wire.
- Do not connect more than 2 wires to any single terminal.
- DC power cable and I/O cables should not exceed 10 m (30 ft).
- The capacitors shown above must be 0.01 μF and rated for 2000V min.
- User power supply must be rated Class 2 with a 5V DC range of 4.5...5.5V DC.

1769-IM12

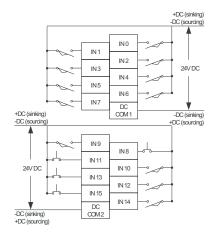
Compact 240V AC input module



Do not use the NC terminals as a connection.

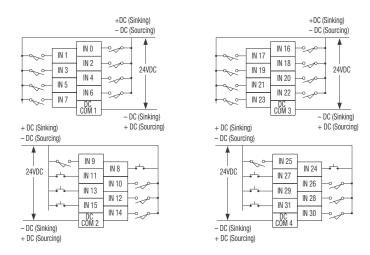
1769-1016

Compact 24V DC sink/source input module


1769-1016

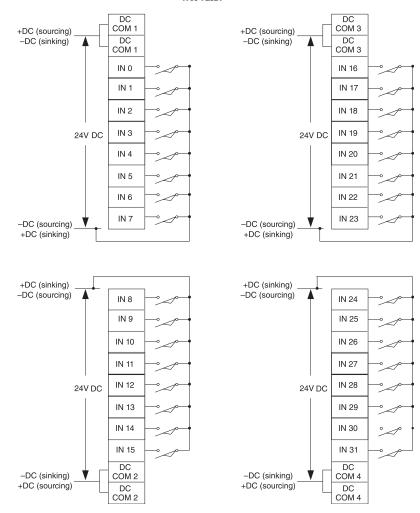
1769-IQ16F

Compact 24V DC sink/source, high-speed input module


1769-IQ16F

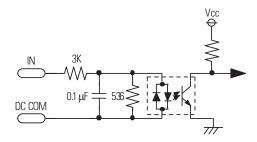
1769-1032

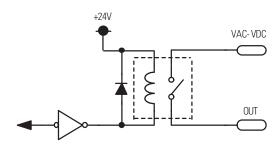
Compact 24V DC sink/source input module

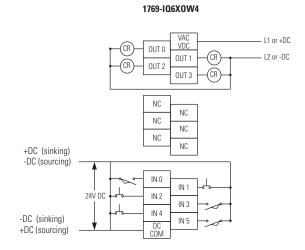

1769-1032

1769-IQ32T

Compact 24V DC sink/source, terminated input module

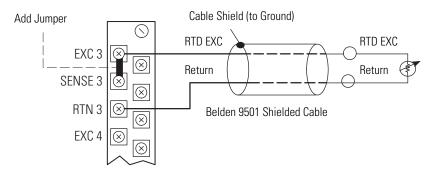

1769-IQ32T

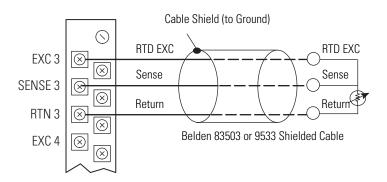

1769-IQ6XOW4


Compact combination 24V DC sink/source input and AC/DC relay output module

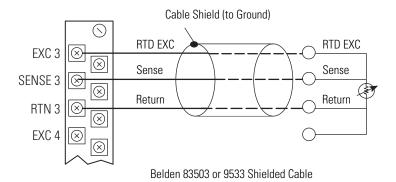
Simplified Input Circuit Diagram

Simplified Output Circuit Diagram

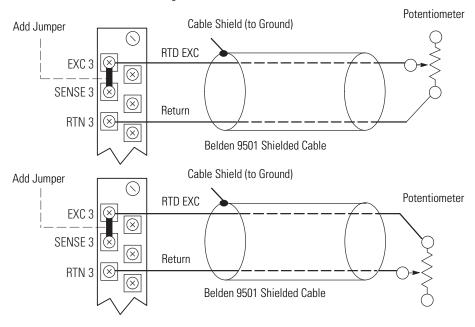



1769-IR6

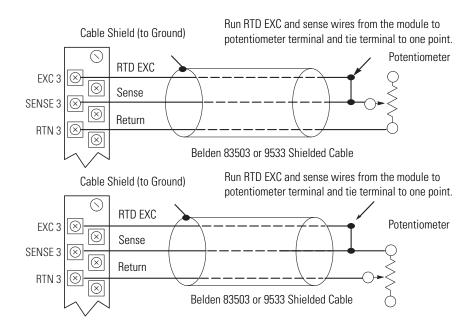
Compact RTD/resistance input module


Two-wire RTD Configuration

Three-wire RTD Configuration

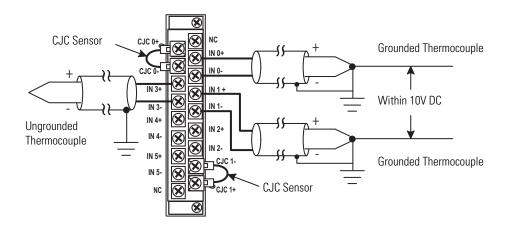


Four-wire RTD Configuration

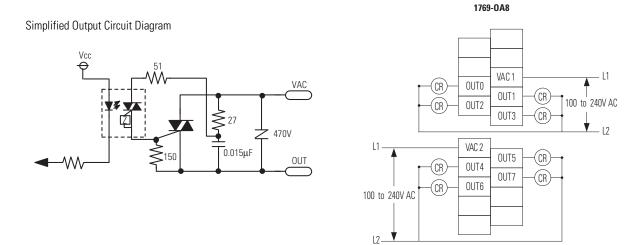


Leave one sensor wire open.

Two-wire Potentiometer Configuration

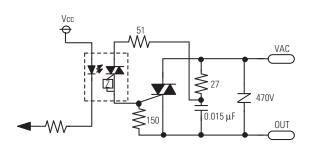


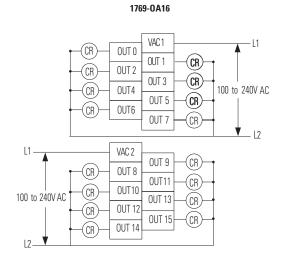
Three-wire Potentiometer Configuration


1769-IT6

Compact Thermocouple/mV input module

1769-0A8

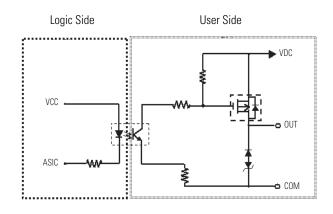

Compact 100/240V AC solid state output module



1769-0A16

Compact 120/240V AC solid state output module

Simplified Output Circuit Diagram



1769-0B8

Compact solid state 24V DC source, high-current output module

Simplified Output Circuit Diagram

+VDC 1 DC+ OUT 0 CR 0UT 1 OUT 2 OUT 3 DC COM NC NC NC NC NC NC +VDC 2 DC+ OUT 4 OUT 5

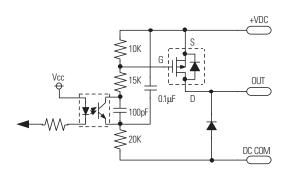
OUT 7

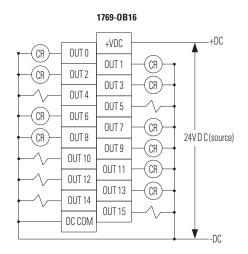
CR

DC-

(CR)

OUT 6

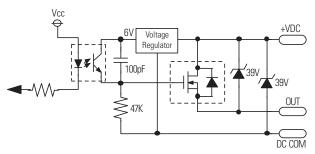

DC COM 2

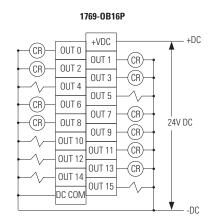

1769-0B8

1769-0B16

Compact solid state 24V DC source output module

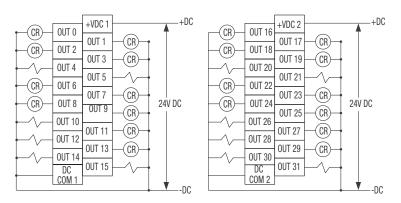
Simplified Output Circuit Diagram

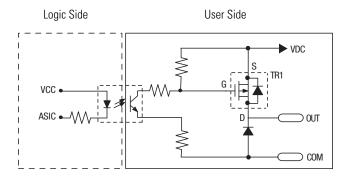



1769-0B16P

Compact solid state 24V DC source, protected output module

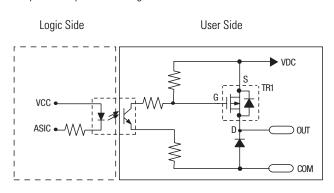
Simplified Output Circuit Diagram

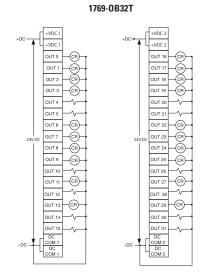

Protection circuit is not shown.


1769-0B32

Compact solid state 24V DC source output module

1769-0B32

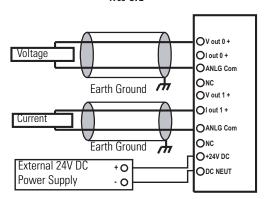

Simplified Output Circuit Diagram



1769-0B32T

Compact solid state 24V DC source, terminated output module

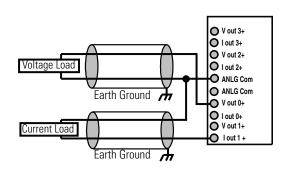
Simplified Output Circuit Diagram



1769-0F2

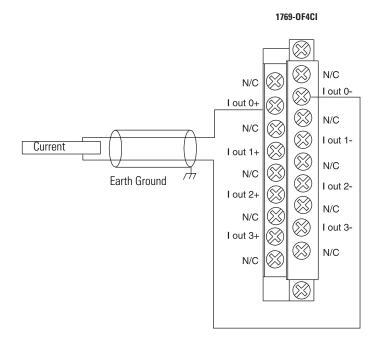
Compact voltage/current output analog module

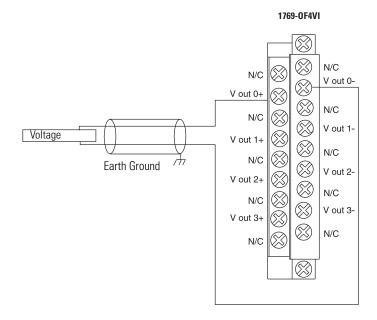
1769-OF2


The external power supply must be rated Class 2, with a 24V DC range of 20.4...26.4V DC and 60 mA minimum. Series B and later modules support this option.

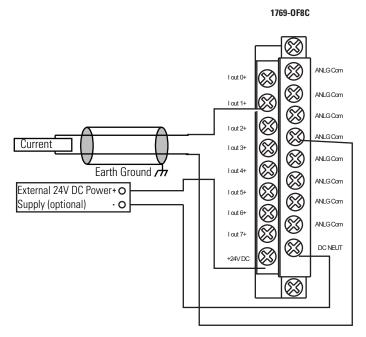
1769-0F4

Compact voltage/current output analog module


Simplified Schematic

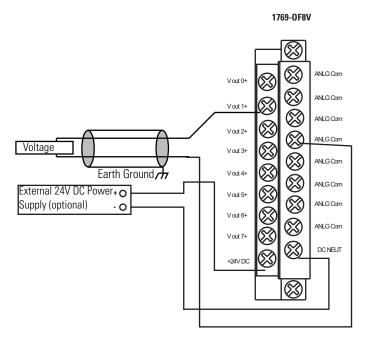

1769-0F4CI

Compact current output, individually isolated analog module


1769-0F4VI

Compact voltage output, individually isolated analog module

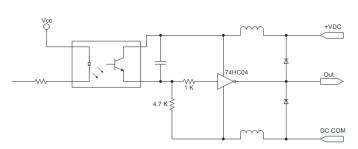
1769-OF8C


Compact current output analog module

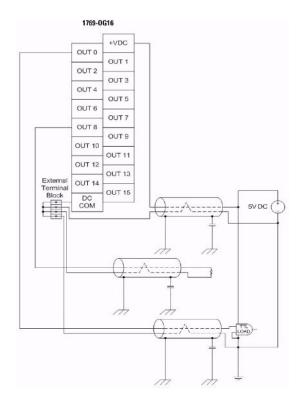
The external power supply must be rated Class 2, with a 24V DC range of 20.4...6.4V DC and 60 mA minimum. Series B and later modules support this option.

1769-OF8V

Compact voltage output analog module

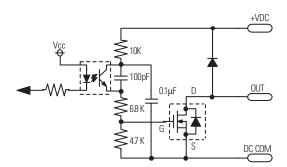


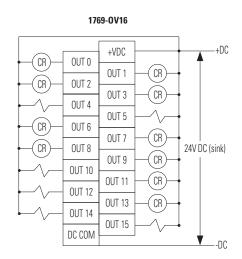
The external power supply must be rated Class 2, with a 24V DC range of 20.4...6.4V DC and 60 mA minimum. Series B and later modules support this option.


1769-OG16

Compact TTL output module

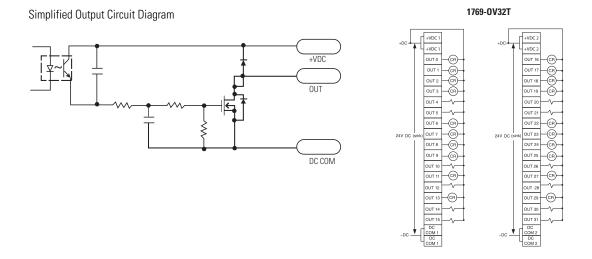
Simplified Output Circuit Diagram

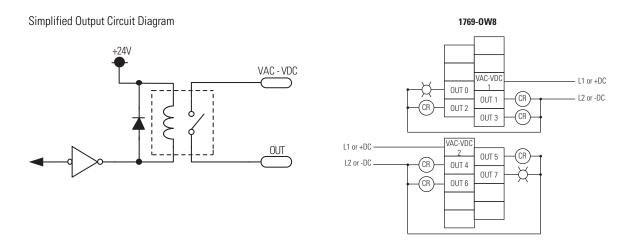

- Use Belden 8761, or equivalent, shielded wire.
- · Do not connect more than two wires to any single terminal.
- DC power cable and I/O cables should not exceed 10 m (30 ft).
- The capacitors shown above must be 0.01 μF and rated for 2000V min.
- User power supply must be rated Class 2 with a 5V DC range of 4.5...5.5V DC.



1769-0V16

Compact solid state 24V DC sink output module

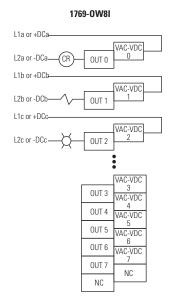

Simplified Output Circuit Diagram


1769-0V32T

Compact solid state 24V DC sink, terminated output module

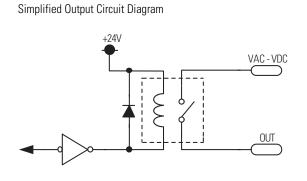
1769-0W8

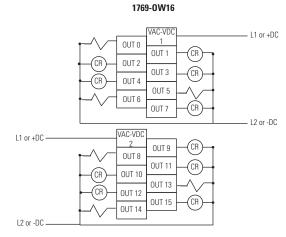
Compact AC/DC relay contact module


1769-0W8I

Compact AC/DC individually isolated, relay contact module

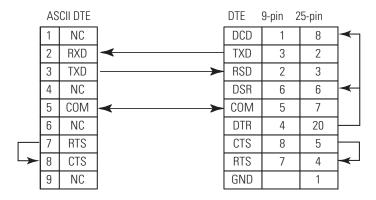
Simplified Output Circuit Diagram


+24V


VAC-VDC

1769-0W16

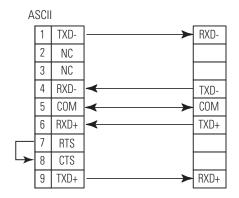
Compact AC/DC relay contact module

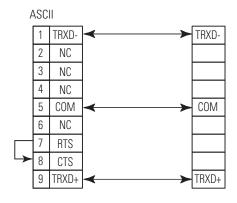

1769-ARM

The 1769-ARM module is an address reserve module for reserving I/O module slots. As a result, no wiring is required.

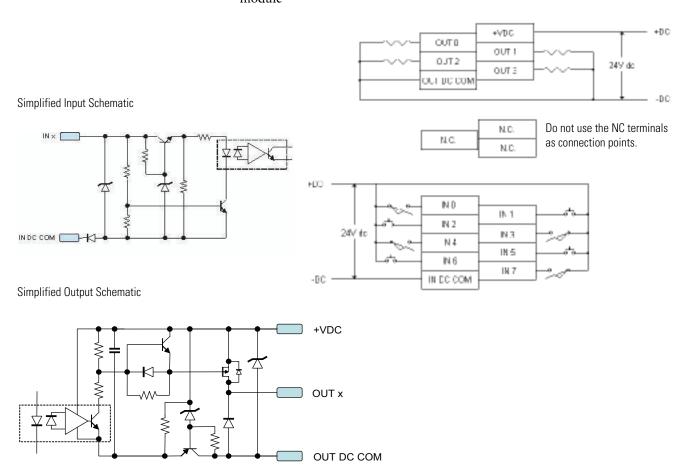

1769-ASCII

Compact ASCII module


RS-232 Wiring Module to DTE Device (hardware handshaking disabled)


RS-232 Wiring Module to Printer (hardware handshaking enabled, standard printer adapter cable)

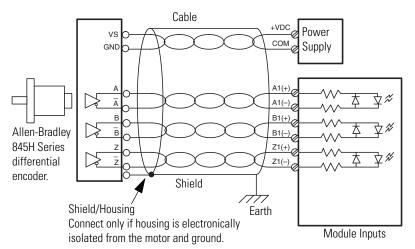
RS-422 Wiring



RS-485 Wiring

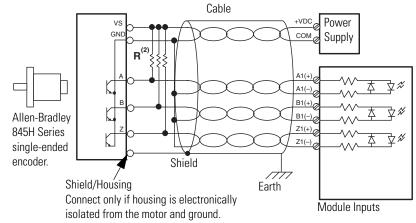
1769-BOOLEAN

 $Compact \ combination \ 24V \ DC \ sink \ input/source \ output \ BOOLEAN \ control \ module$



1769-HSC

Compact high-speed counter module


Differential Encoder Wiring

Use twisted-pair, individually-shielded cable with a maximum length of 300 m (1000 ft).

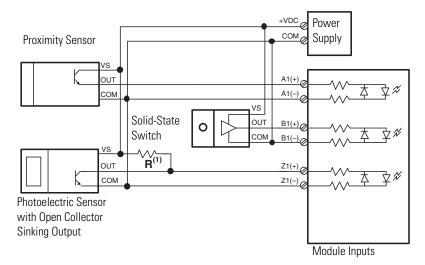
Single-ended Encoder Wiring

Use twisted-pair, individually-shielded cable with a maximum length of 300 m (1000 ft).

External resistors are required if they are not internal to the encoder. The pull-up resistor (R) value depends on the power supply value. To calculate the maximum resistor value, use this formula:

$$R = \frac{(Vdc - Vmin)}{Imin}$$

where:


- R = maximum pull-up resistor value
- Vdc = power supply voltage
- Vmin = 2.6V DC
- min = 6.8 mA

Power Supply Voltage	Pull-up Resistor Value Max (R) ⁽¹⁾
5V DC	352 Ω
12V DC	1382 Ω
24V DC	3147 Ω

⁽¹⁾ Resistance values may change, depending upon your application.

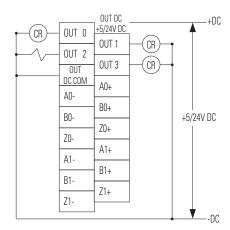
The minimum resistor (R) value depends on the current sinking capability of the encoder.

Discrete Device Wiring

External resistors are required if they are not internal to the encoder. The pull-up resistor (R) value depends on the power supply value. To calculate the maximum resistor value, use this formula:

$$R = \frac{(Vdc - Vmin)}{Imin}$$

where:


- R = maximum pull-up resistor value
- Vdc = power supply voltage
- Vmin = 2.6V DC
- min = 6.8 mA

Power Supply Voltage	Pull-up Resistor Value Max (R) ⁽¹⁾
5V DC	352 Ω
12V DC	1382 Ω
24V DC	3147 Ω

⁽¹⁾ Resistance values may change, depending upon your application.

The minimum resistor (R) value depends on the current sinking capability of the encoder.

Output Wiring

Notes:

I/O Memory Mapping

I/O Type	Cat. No.	Page
AC digital	1769-IA8I 1769-IA16 1769-IM12 1769-OA8 1769-OA16	54 54 94 107 110
DC digital	1769-IG16 1769-IQ16 1769-IQ16F 1769-IQ32 1769-IQ32T 1769-IQ6XOW4 1769-OB8, Series A 1769-OB16, Series B 1769-OB32 1769-OB32T 1769-OG16 1769-OV16 1769-OV32T	92 94 95 96 96 97 113 116 119 122 125 162 165
Contact	1769-0W8 1769-0W8I 1769-0W16	170 173 176
Analog	1769-IF4 1769-IF4I 1769-IF4XOF2 1769-IF4FXOF2F 1769-IF8 1769-IF16C 1769-IF6 1769-IT6 1769-OF2 1769-OF4 1769-OF4CI 1769-OF8C 1769-OF8V	55 57 61 65 70 80 86 100 104 128 132 135 139 142 152
Specialty	1769-ARM 1769-ASCII 1769-BOOLEAN 1769-HSC	179 180 187 195

1769-IA8I

The following I/O memory mapping lets you configure the 1769-IA8I module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points. For the 1769-IA8I, bits 8 to 15 are not used.

2	Bit Position															
No	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r

⁽¹⁾ r = read.

1769-IA16

The following I/O memory mapping lets you configure the 1769-IA16 module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points.

ord	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

1769-IF4

The following I/O memory mapping lets you configure the 1769-IF4 module.

Input Data File

For each input module, slot x, words 0...3 in the input data file contain the analog values of the inputs.

5	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Anal	og Inp	out Da	ta Cha	nnel ()									
1	SGN	Anal	alog Input Data Channel 1													
2	SGN	Anal	nalog Input Data Channel 2													
3	SGN	Anal	og Inp	ut Da	ta Cha	nnel 3	3									
4	Not Use	ed S3 S2 S1 S0												SO		
5	U0	00	U1	01	U2	02	U3	03	Set t	:00						

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- Sx = General status bit for channels 0 through 3. This bit is set (1) when an error (over- or under-range) exists for that channel.
- Ux = Under-range flag bits for channels 0 through 3. These bits can be used in the control program for error detection.
- Ox = Over-range flag bits for channels 0 through 3. These bits can be used in the control program for error detection.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement. Refer to the Compact I/O Analog Modules User Manual, publication number 1769-UM002 for additional details.

Words 0.....3 of the configuration file allow you to change the parameters of each channel independently. For example, word 0 corresponds to channel 0.

Define	To Select	Ma	ke th	ese l	bit se	tting	s							
		15	14	13	12	11	10	9	8	4 7	3	2	1	0
Input Filter Selection/-3 dB	60 Hz/15.7 Hz										0	0	0	0
Frequency	50 Hz/13.1 Hz										0	0	0	1
	Not Used										0	0	1	0
	250 Hz/65.5 Hz										0	0	1	1
	500 Hz/131Hz										0	1	0	0
	Spare ⁽¹⁾													
Input Type/	-10 to +10V dc					0	0	0	0					
Range	0 to 5V dc					0	0	0	1					
	0 to 10V dc					0	0	1	0					
	4 to 20 mA					0	0	1	1	þ				
	1 to 5V dc					0	1	0	0	Not Used				
	0 to 20 mA					0	1	0	1	N _S				
	Spare ⁽¹⁾													
Input Data Format	Raw/Proportional Data		0	0	0									
	Engineering Units		0	0	1									
	Scaled-for-PID		0	1	0									
	Percent Range		0	1	1									
	Spare ⁽¹⁾													
Enable Channel	Enabled	1												
	Disabled	0												

⁽¹⁾ An attempt to write any nonvalid (spare) bit configuration into any selection field results in a module configuration error.

1769-IF4I

The following I/O memory mapping lets you configure the 1769-IF4I module.

Input Data File

For each input module, slot x, words 0...3 in the input data file contain the analog values of the inputs.

	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Anal	nalog Input Data Channel O													
1	SGN	Anal	nalog Input Data Channel 1													
2	SGN	Anal	Analog Input Data Channel 2													
3	SGN	Anal	og Inp	out Da	ta Cha	innel 3	3									
4	Nu	Time	Stam	ıp Valı	ıe											
5	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	S3	S2	S1	SO
6	L3	НЗ	U3	03	L2	H2	U2	02	L1	H1	U1	01	LO	Н0	U0	00

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- Nu = Not used. Bit set to 0.
- Sx = General status bit for input channels 0...3.
- Lx = Low alarm flag bits for input channels 0...3.
- Hx = High alarm flag bits for input channels 0...3.
- Ux = Under-range flag bits for channels 0...3. When set, the input signal is under normal range or an open circuit condition exists, in the case of the 4-20 mA range.
- Ox = Over-range flag bits for channels 0...3. When set, the input signal is over normal range or an open circuit condition exists. Open circuit detection applies to voltage input ranges only.

Output Data File

For each input module, slot x, word 0 in the output data file contains the analog values of the outputs.

Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Nu	UL3	UH3	UL2	UH2	UL1	UH1	ULO	UH0							

The bits are defined as follows:

- Nu = Not used. Bit set to 0.
- UHx = Cancel High Process Alarm Latch x. Allows each high process alarm latch to be individually cancelled. Cancel = 1.
- ULx = Cancel Low Process Alarm Latch x. Allows each low process alarm latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement.

5	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Real	Time S	ample	Value												
1	ETS	Rese	rved													
2	EC	Rese	rved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel (ChIO
3	Reser	ved	Chio Chio '													
4	S	Proce	Process Alarm High Data Value Channel 0													
5	S	Proce	Process Alarm Low Data Value Channel 0													
6	S	Alarr	n Dead	d Band	Value	Chan	nel 0									,
7	Reser	ved														
8	EC	Rese	rved			EA	AL	El	Rese	erved			Inpt	Filter	Sel Cl	hl1
9	Reser	ved				Inpt Chl1	Dta Fm	1	Rese	erved			Inpt Chl1		ngeSe	
10	S	Process Alarm High Data Value Channel 1														
11	S	Proce	Process Alarm Low Data Value Channel 1													
12	S	Alarr	n Dead	d Band	l Value	Chan	nel 1									

— Ģ	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13	Reser	rved														
14	EC	Rese	erved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel	ChI2
15	Reser	rved				Inpt Chl2	Dta Fm	1	Rese	erved			Inpt Chl2		ngeSe	I
16	S	Proc	Process Alarm High Data Value Channel 2													
17	S	Proc	Process Alarm Low Data Value Channel 2													
18	S	Aları	m Dea	d Band	d Value	e Chan	nel 2									
19	Reser	rved														
20	EC	Rese	erved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel	ChI3
21	Reser	rved				Inpt Chl3	Dta Fm	1	Rese	erved			Inpt Chl3		ngeSe	I
22	S	Proc	ess Ala	arm Hi	gh Da	ta Valu	ie Cha	nnel 3								
23	S	Proc	ess Ala	arm Lo	w Dat	a Valu	e Char	nel 3								
24	S	Aları	m Dea	d Band	d Value	e Chan	nel 3									
25	Reser	rved														

The bits are defined as follows:

- EC = Enable Channel.
- Inpt Dta Fm Chlx = Input Data Format Select.
- EA = Enable Alarm.
- AL = Alarm Latch.
- EI = Enable Interrupt. (1)
- Inpt Tp/Rnge Sel Chlx = Input Type/Range Select.
- Inpt Filter Sel Chlx = Input Filter Select.
- Reserved = Allows for future expansion.
- ETS = Enable Time Stamp.

⁽¹⁾ MicroLogix 1500 and CompactLogix L3x controllers do not support interrupts.

Define	To Select	Mal	ke these l	oit se	tting	3					
		15	1411	10	9	8	74	3	2	1	0
Input Filter Selection	60 Hz							0	0	0	0
	50 Hz							0	0	0	1
	28.5 Hz							0	0	1	0
	300 Hz							0	0	1	1
	360 Hz							0	1	0	0
Enable Interrupt	Enable					1					
	Disable					0					
Enable Process Alarm Latch	Enable				1						
Alami Latun	Disable				0						
Enable Process Alarms	Enable			1							
	Disable			0							
Enable Channel	Enable	1									
	Disable	0									

Define	Indicate this	These b	it set	tings	1					
		1511	10	9	8	74	3	2	1	0
Input Range Select	-10+10V dc						0	0	0	0
	05V dc						0	0	0	1
	010V dc						0	0	1	0
	420 mA						0	0	1	1
	15V dc						0	1	0	0
	020 mA						0	1	0	1
Input Data Select	Raw/Proportional Counts		0	0	0					
	Engineering Units		0	0	1					
	Scaled for PID		0	1	0					
	Percent Range		0	1	1					

1769-IF4XOF2

The following I/O memory mapping lets you configure the 1769-IF4XOF2 module.

Input Data File

The input data file provides access to input data for use in the control program, over-range indication for the input and output channels, and output data feedback as described below.

	Bit Po	sition	1													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Anal	og Input	Data	Chann	el O				0	0	0	0	0	0	0
1	SGN	Anal	og Input	Data	Chann	el 1				0	0	0	0	0	0	0
2	SGN	Anal	og Input	Data	Chann	el 2			0	0	0	0	0			
3	SGN	Anal	og Input	Data	Chann	el 3			0	0	0	0	0			
4	Not Us	sed ⁽¹⁾											13	12	11	10
5	Not Used	H0	Not Used	H1	Not l	Jsed ⁽⁾					E1	E0	01	00		
6	SGN	Outp	ut Data	Echo/l	Loopba	ack for	Outp	ut Char	0	0	0	0	0			
7	SGN	Outp	ut Data	Echo/l	Loopba	ack for	Outp	ut Char	nel 1	0	0	0	0	0	0	0

⁽¹⁾ All unused bits are set to 0 by the module.

IMPORTANT

Input words 6 and 7 contain the output data echo/loopback information for output channels 0 and 1 respectively. Bits 0 through 6 and Bit 15 of words 6 and 7 should always be set to zero in your control program. If they are not set to 0, the invalid data flag (Ex) will be set for that channel by the module. However, the channel will continue to operate with the previously converted value.

The bits are defined as follows:

- SGN = Sign bit in two's complement format. Always positive (equal to zero) for the 1769-IF4XOF2 module.
- Ix = Over-range flag bits for input channels 0 through 3. These bits can be used in the control program for error detection. When set to 1, the bits signal that the input signal is outside the normal operating range. However, the module continues to convert analog data to the maximum full-range value. When the over-range condition is cleared, the bits automatically reset (0).

• Ox = Word 5, bits 0 and 1 provide over-range indication for output channels 0 and 1. These bits can be used in the control program for error detection. When set to 1, the bits signal that the output signal is outside the normal operating range. However, the module continues to convert analog data to the maximum full-range value. When the over-range condition is cleared, the bits automatically reset (0).

TIP Under-range indication is not provided because zero is a valid number.

- Ex = When set (1), this bit indicates that invalid data has been set in the output data bits 0 through 6 or the sign bit (15). For example, the value sent by the controller is outside the standard output range or increment, such as 128, 256.
- Hx = Hold Last State bits. When set (1), these bits indicate that the channel is in a Hold Last State condition.
- Words 6 and 7 = These words reflect the analog output data echo of the analog value being converted by the digital/analog converter, not necessarily the electrical state of the output terminals. They do not reflect shorted or open outputs.

IMPORTANT It is only important to use the loopback function of input words 6 and 7 if the controller supports the Program mode or Fault mode functions, and if it is configured to use them.

Output Data File

The output data file applies only to output data from the module as shown in the table below.

	Bit Positi	ion														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Ana	log Οι	itput [Oata C	Channe	el O			0	0	0	0	0	0	0
1	SGN	Ana	log Οι	ıtput [Oata C	Channe	el 1			0	0	0	0	0	0	0

IMPORTANT

Bits 0 through 6 and Bit 15 of output data words 0 and 1 should always be set to zero in your control program. If they are not set to 0, the invalid data flag (Ex) will be set for that channel. However, the channel will continue to operate with the previously converted value. If a MVM (Move with Mask) instruction is used with a mask of 7F80 (hexidecimal) to move data to the output words, writing to bits 0 through 6 and bit 15 can be avoided

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are typically provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. Refer to the Compact Analog I/O Combination Module User Manual, publication number 1769-UM008 for additional details.

Ţ	Bit Pos	itio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Not Used ⁽¹⁾	Not Use	t ed ⁽¹⁾		No	t U	lsed ⁽¹)	El3	El2	El1	EI0	FM0 ⁽²⁾	PM0 ⁽²⁾	Not Used ⁽¹⁾	PFE0 ⁽²⁾
1	Not Used ⁽¹⁾	Not Use	t ed ⁽¹⁾		No	t U	sed ⁽¹)	Not Used ⁽¹⁾	Not Used ⁽¹⁾	E01	E00	FM1 ⁽²⁾	PM1 ⁽²⁾	Not Used ⁽¹⁾	PFE1 ⁽²⁾
2	SGN	Cha	nne	10 F	ault	t Va	alue ⁽²	2)		0	0	0	0	0	0	0
3	SGN	Cha	nne	1 O F	Prog	ran	n (Idl	e) \	/alue ⁽²⁾	0	0	0	0	0	0	0
4	SGN	Cha	nne	l 1 F	ault	t Va	alue ⁽²	2)		0	0	0	0	0	0	0
5	SGN	Cha	nne	l 1 F	Prog	rar	n (Idl	e) \	/alue ⁽²⁾	0	0	0	0	0	0	0

⁽¹⁾ Any attempt to write a nonvalid (1s) bit configurations into any not used selection field results in a module configuration error.

The bits are defined as follows:

- SGN = Sign bit in two's complement format. The sign of the data for the 1769-IF4XOF2 must be positive (Bit 15 = 0) or a configuration error occurs.
- EIx = Individually enable or disable input channels 0 through 3 using these
 bits. When a channel is not enabled, the module provides no current or
 voltage input to the host controller.
- EOx = Individually enable or disable output channels 0 and 1 using these bits. When a channel is not enabled, the module does not produce current or voltage.

TIP The enable bit remains set even when a channel is configured incorrectly. However, a configuration error for that channel is set. When this occurs, disable the channel, reconfigure the channel correctly, and then enable the channel.

⁽²⁾ Not all controllers support these functions. Refer to your controller's user manual for details.

 PMx = These bits provide Program (Idle) mode selection for analog output channels 0 and 1.

Hold Last State (0)—When reset, this bit directs the module to hold the analog output at the last converted value when the module transitions to Program mode. This is the default condition.

User-Defined Safe State (1)—When this bit is set and the module transitions to Program mode, the module converts the user-specified integer value from the Channel *x* Program Value Word (3 or 5) to the appropriate analog output for the configured range as wired.

 FMx = These bits provide Fault mode selection for analog output channels 0 and 1.

Hold Last State (0)—When reset, this bit directs the module to hold the analog output at the last converted value when the module transitions to Fault mode. This is the default condition.

User-Defined Safe State (1)—When this bit is set and the module transitions to Fault mode, the module converts the user-specified integer value from the Channel x Fault Value Word (2 or 4) to the appropriate analog output for the configured range as wired.

- PFEx = The Program to Fault Enable bit determines which data value, Program (PFEx = 0) or Fault (PFEx = 1), is applied to the output if the module undergoes a fault condition while in the Program mode, resulting in a change to Fault mode.
- Channel x Program (Idle) Value

Words 3 and 5 allow you to enter the integer values that output Channel 0 (Word 3) and output Channel 1 (Word 5) should assume when the system transitions to the Program mode. The value must be in increments of 128, such as 0, 128, or 256, for proper operation. If the value entered is outside the acceptable increment or range, the module generates a configuration error for that channel. The module default is zero.

• Channel x Fault Value

Words 2 and 4 allow you to enter the integer values that output Channel 0 (Word 2) and output Channel 1 (Word 4) should assume when the system transitions to the Fault mode. The value must be in increments of 128, such as 0, 128, or 256, for proper operation. If the value entered is outside the acceptable increment or range, the module generates a configuration error for that channel. The module default is zero.

IMPORTANT

PMx, FMx, PFEx, Channel x Program (Idle) Value and Channel x Fault Value functions are not supported by all controllers. Refer to your controller's user manual for details.

1769-IF4FX0F2F

The following I/O memory mapping lets you configure the 1769-IF4FXOF2F module.

Input Data File

For each module, slot x, words 0...3 in the input data file contain the converted value of the module's analog input channels. Word 4 in the input data file contains the time stamp value corresponding to the module's last input data sampling period. Words 5 and 6 in the input data file contain status bits for the analog input channels. Word 7 in the input data file contains status bits for the analog output channels. Words 8 to 9 contain the directed values of the analog output channels (output data echo).

Ъ	Bit Po	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	SGN	Analo	og Rea	d (Inpı	ut) Da	ıta Val	ue Cha	annel C								0
1	SGN	Analo	og Rea	d (Inpı	ut) Da	ıta Val	ue Cha	annel 1								0
2	SGN	Analo	og Rea	d (Inpı	ut) Da	ıta Val	ue Cha	annel 2								0
3	SGN	Analo	nalog Read (Input) Data Value Channel 3													
4	0	Time	ime Stamp Value													
5	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	SI3	SI2	SI1	SIO
6	LI3	HI3	UI3	013	LI2	HI2	UI2	012	LI1	HI1	UI1	011	LIO	HI0	UI0	010
7	Nu	Nu	U01	001	Nu	Nu	U00	000	Nu	Nu	Nu	Nu	Nu	Nu	S01	S00
8	SGN	Outp	ut Data	a Loop	back,	Echo (Channe	el O							0	0
9	SGN	Outp	ut Data	a Loop	back,	Echo (Channe	el 1							0	0

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- Nu = Not Used. Bit set to 0.
- SIx = General Status bit for input channels 0...3.
- OIx = Over range flag bits for input channels 0...3.
- UIx = Under range flag bits for input channels 0...3.
- HIx = High Alarm flag bits for input channels 0...3.
- LIx = Low Alarm flag bits for input channels 0...3.
- SOx = General Status bit for output channels 0...1.
- OOx = Over range flag bits for output channels 0...1.
- UOx = Under range flag bits for output channels 0...1.

Output Data File

For each module, slot x, words 0 and 1 in the output data file contain the control program's directed state of the module's analog output channels. Word 2 contains the cancel input channel alarm control bits. Word 3 contains the cancel output channel clamp control bits.

ē	Bit P	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	SGN	Anal	analog Output Data Channel O										0	0		
1	SGN	Anal	Analog Output Data Channel 1											0	0	
2	0									CHI1	CLI0	CHIO				
3	0	0	0	0	0	0	0	0	0	0	0	0	CL01	CH01	CL00	CH00

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- CHIx = Cancel High Process Alarm Latch for Input x. Allows each input high-process-alarm latch to be individually cancelled. Cancel = 1.
- CLIx = Cancel Low Process Alarm Latch for Input x. Allows each input low-process-alarm latch to be individually cancelled. Cancel = 1.
- CHOx = Cancel High Clamp Alarm Latch for Output x. Allows each output high-clamp-alarm latch to be individually cancelled. Cancel = 1.
- CLOx = Cancel Low Clamp Alarm Latch for Output x. Allows each output low-clamp-alarm-latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens provided by the programming software simplify configuration.

Some systems, like the 1769-ADN DeviceNet adapter system, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit Po	sitio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	Real	Time	Samp	le Val	ue										
1	ETS	Rese	Reserved													
2	EC	Rese	Reserved EA AL EI Reserved Input Filter Sel ChI												chI0	
3	Reserv	ved Input Dta Fm Reserved Inpt Tp/Rnge Sel ChIO ChIO														
4	SGN	Proc													0	

	Bit Po	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
5	SGN	Prod	ess A	larm L	ow D	ata Va	lue Cl	nannel	0							0
6	SGN	Alar	m Dea	ad Bar	ıd Val	ue Cha	annel	0								0
7	Reser	ved														•
8	EC	Res	erved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel	Chl1
9	Reser	ved				Inpu Chl1	t Dta	Fm	Rese	erved			Inpt Chl1		nge So	el
10	SGN	Proc	ess A	larm F	ligh D	ata Va	alue C	hanne	l 1							0
11	SGN	Proc	ess A	larm L	ow D	ata Va	lue Cl	nannel	1							0
12	SGN	Alar	m Dea	ad Bar	nd Val	ue Cha	annel	1								0
13	Reser	ved														
14	EC	Res	erved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel	Chl2
15	Reser	ved				Inpu Chl2	t Dta	Fm	Rese	erved			Inpt Chl2		nge S	el
16	SGN	Prod	ess A	larm F	ligh D	ata Va	alue C	hanne	12							0
17	SGN	Proc	ess A	larm L	ow D	ata Va	lue Cl	nannel	2							0
18	SGN	Alar	m Dea	ad Bar	ıd Val	ue Cha	annel	2								0
19	Reser	ved	ed													
20	EC	Res	erved			EA	AL	El	Rese	erved			Inpu	t Filte	er Sel	Chl3
21	Reser	ved				Inpu Chl3	t Dta	Fm	Rese	erved			Inpt Chl3	Tp/R	nge Si	el
22	SGN	Proc	ess A	larm F	ligh D	ata Va	alue C	hanne	13							0
23	SGN	Proc	ess A	larm L	ow D	ata Va	lue Cl	nannel	3							0
24	SGN	Alar	m Dea	ad Bar	ıd Val	ue Cha	annel	3								0
25	Reser	ved														
26	EC	Res	erved						EHI	ELI	LC	ER	FM	PM	0	PFE
27	Reser	ved				Outp	ot Fm	ChIO	Rese	erved			Outp ChlC		Rnge	Sel
28	SGN	Faul	t Valu	e Cha	nnel 0	1									0	0
29	SGN	Prog	gram (I	ldle) V	alue (Channe	el O								0	0
30	SGN	Clar	np Hig	gh Dat	a Valu	ıe Cha	nnel ()							0	0
31	SGN	Clar	np Lov	w Data	a Valu	e Chai	nnel 0								0	0
32	SGN	Ram	ıp Rat	e Char	nnel 0										0	0
33	Reser	ved														
34	EC	Res	erved						EHI	ELI	LC	ER	FM	PM	0	PFE
35	Reser	ved				Outp	ot Fm	ChI1	Rese	erved	•	•	Outp Chl1		Rnge	Sel
36	SGN	Faul	t Valu	e Cha	nnel 1										0	0
37	SGN	Prog	gram (I	ldle) V	alue (Channe	el 1								0	0
38	SGN	Clar	np Hiç	gh Dat	a Valu	ıe Cha	nnel 1								0	0

<u> </u>	Bit Po	sitio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
39	SGN	Clarr	Clamp Low Data Value Channel 1 0 0													
40	SGN	Ram	Ramp Rate Channel 1 0 0													
41	Reserv	/ed														•

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- Real Time Sample Value = Provides the ability to configure the Real Time Sample Rate.
- ETS = Enable Time Stamping.
- EC = Enable Channel.
- EA = Enable Alarm.
- AL = Alarm Latch.
- EI = Enable Input Process Alarm Interrupt.
- Input Filter Sel ChIx = Input Channel Filter Setting.
- Inpt Dta Fm ChIx = Input Data Format Select.
- Inpt Tp/Rnge Sel ChIx = Input Type/Range Select.
- Process Alarm High Data Value Channel x = Provides the ability to configure the Input Process Alarm High Value.
- Process Alarm Low Data Value Channel x = Provides the ability to configure the Input Process Alarm Low Value.
- Alarm Dead Band Value Channel x = Provides the ability to configure the Input Process Dead Band Value.
- Reserved = Bits not used, must be set to 0.
- EHI = Enable Output Channel Interrupt on High Clamp Alarm.
- ELI = Enable Output Channel Interrupt on Low Clamp Alarm.
- LC = Latch Low/High Clamp and Under/Over Range Alarm.
- ER = Enable Ramping.
- FM = Enable Fault Alternate Output State mode.
- PM = Enable Program/Idle Alternate Output State mode.
- PFE = Enable Program/Idle to Fault Alternate Output State mode.
- Outpt Fm ChIx = Output Data Format Select.
- Outpt Tp/Rnge Sel ChIx = Output Type/Range Select.
- Ramp Rate Channel x = Provides the ability to configure the Ramp Rate.

Define	To Calcat	Ma	ke tl	iese	bit s	ettin	gs										
	Select	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Input Filter	60 Hz													0	0	0	0
Selection/ -3 dB	50 Hz													0	0	0	1
Frequency	5 Hz													0	0	1	0
	10 Hz													0	0	1	1
	100 Hz													0	1	0	0
	250 Hz													0	1	0	1
	500 Hz													0	1	1	0
	1000 Hz													0	1	1	1
	No Filter													1	0	0	0

Define	To Select	Mal	ke th	ese b	it se	ttings	3										
		15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Input Type /	-10 to +10V dc													0	0	0	0
Range	0 to 5V dc													0	0	0	1
Select	0 to 10V dc													0	0	1	0
	4 to 20 mA													0	0	1	1
	1 to 5V dc													0	1	0	0
	0 to 20 mA													0	1	0	1
Input Data Format Select	Raw/ Proportional Counts						0	0	0								
Select	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

Define	To Select	Ma	ke th	ese b	it se	ttings	3										
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Output	-10 to +10V dc													0	0	0	0
Type / Range Select	0 to 5V dc													0	0	0	1
Select	0 to 10V dc													0	0	1	0
	4 to 20 mA													0	0	1	1
	1 to 5V dc													0	1	0	0
	0 to 20 mA													0	1	0	1
Output Data Format	Raw/ Proportional Counts						0	0	0								
Select	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-IF8

The following I/O memory mapping lets you configure the 1769-IF8 module.

Input Data File

For each input module, slot *x*, words 0...7 in the input data file contain the analog values of the inputs.

<u> </u>	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Analog Input Data Channel 0														
1	SGN	Analog Input Data Channel 1														
2	SGN	Analog Input Data Channel 2														
3	SGN	Analog Input Data Channel 3														
4	SGN	Analog Input Data Channel 4														
5	SGN	Anal	Analog Input Data Channel 5													
6	SGN	Anal	og Inp	ut Da	ta Cha	innel 6	3									
7	SGN	Analog Input Data Channel 7														
8	Nu	Time	Stam	ıp Valu	ıe											
9	Nu	Nu	Nu	Nu	Nu	Nu	Nu	Nu	S7	S6	S5	S4	S3	S2	S1	SO
10	L3	НЗ	U3	03	L2	H2	U2	02	L1	H1	U1	01	LO	Н0	U0	00
11	L7	H7	U7	07	L6	Н6	U6	06	L5	H5	U5	05	L4	H4	U4	04

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- Nu = Not used. Bit set to 0.
- Sx = General status bit for input channels 0...7.
- Lx = Low alarm flag bits for input channels 0...7.
- Hx = High alarm flag bits for input channels 0...7.
- Ux = Under-range flag bits for channels 0...7. When set, the input signal is under normal range or an open circuit condition exists, in the case of the 4-20mA range.
- Ox = Over-range flag bits for channels 0...7.

Output Data File

For each input module, slot x, word 0 in the output data file contains alarm unlatch control bits.

Word	Bit Position															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	CL L7	CL H7	CL L6	CL H6	CL L5	CL H5	CL L4	CL H4	CL L3	CL H3	CL L2	CL H2	CL L1	CL H1	CL LO	CL H0

The bits are defined as follows:

- CLHx = Cancel High Process Alarm Latch for Input x. Allows each input high-process-alarm latch to be individually cancelled. Cancel = 1.
- CLLx = Cancel Low Process Alarm Latch for Input x. Allows each input low-process-alarm latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. Refer to the Compact Analog I/O User Manual, publication number 1769-UM002 for additional details.

핃	Bit Position																
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	Real Ti	me Sample Value															
1	ERTS	Reserved															
2	EC	Rese	rved			EA	AL	El	Rese	erved			Input Filter Sel Chl0				
3	Reserv	red				Inpt Chl0	Dta Fr	n	Rese	erved			Inpt Tp/RngeSel ChIO				
4	S	Process Alarm High Data Value Channel 0															
5	S	Process Alarm Low Data Value Channel 0															
6	S	Alarm Dead Band Value Channel 0															
7	Pad																
8	EC	Rese	rved			EA	AL	El	El Reserved				Inpt Filter Sel (
9	Reserved					Inpt Chl1	Dta Fr	n	Rese	erved			Inpt Tp/RngeSel Chl1				
10	S	Process Alarm High Data Value Channel 1															
11	S	Proce	ess Al	arm Lo	ow Da	ta Valı	ue Cha	nnel '	1								

_	Bit Po	Position																
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
12	S	Alar	m Dea	ad Ban	d Valu	e Chai	nnel 1						<u> </u>					
13	Pad																	
14	EC	Rese	erved			EA	AL	El	Rese	erved			Inpi	ıt Filte	er Sel	Chl2		
15	Reserved						Dta Fr	n	Rese	erved			<u> </u>			el Chl2		
		ı				Chl2												
16	S					ta Value Channel 2												
17	S						a Value Channel 2											
18	S	Alarm Dead Band Value Channel 2																
19	Pad	ı	Reserved EA AL EI Reserved Input Filter Sel Chl3															
20	EC		erved			EA	AL	El					<u> </u>					
21	Reserv	/ed				Inpt Chl3	Dta Fr	n	Rese	erved			Inpt	Tp/R	ngeS	el Chl3		
22	S	Proc	Process Alarm High Data Value Channel 3															
23	S	Proc	Process Alarm Low Data Value Channel 3															
24	S	Alar	m Dea	ad Ban	d Valu	e Cha	nnel 3											
25	Pad	J																
26	EC	Rese	erved			EA	AL	El	Rese	erved			Input Filter Sel Chl4					
27	Reserv	Inpt Chl4	Dta Fr	n	Rese	erved			Inpt	Inpt Tp/RngeSel Chl4								
28	S	Process Alarm High Data Value Channel 4																
29	S	Proc	ess A	larm L	ow Da	ta Val	ue Cha	annel 4	4									
30	S	Alar	m Dea	ad Ban	d Valu	e Chai	nnel 4											
31	Pad																	
32	EC	Rese	erved			EA	AL	El	Rese	erved			Inpu	ut Filte	er Sel	ChI5		
33	Reserv	/ed				Inpt Dta Fm Reserved Chl5							Inpt	Tp/R	ngeS	el Chl5		
34	S	Proc	ess A	larm H	igh Da	ita Val	lue Ch	annel	5									
35	S	Proc	ess A	larm L	ow Da	ta Val	ue Cha	annel 9	5									
36	S	Alar	m Dea	ad Ban	d Valu	e Cha	nnel 5											
37	Pad																	
38	EC	Rese	erved			EA	AL	El	Rese	erved			Input Filter Sel Chl6					
39	Reserv	/ed				Inpt Dta Fm Reserved Chl6								Inpt Tp/RngeSel Chl6				
40	S	Proc	ess A	larm H	igh Da	ita Val	lue Ch	annel	6									
41	S	Proc	ess A	larm L	ow Da	ta Val	ue Cha	annel (6									
42	S	Alarm Dead Band Value Channel 6																
43	Pad														-			
44	EC	Rese	erved			EA	AL	El	Rese	erved			Input Filter Sel Chl7					
45	Reserv	/ed					Inpt Dta Fm Reserved Chl7							Inpt Tp/RngeSel Chl7				
46	S	Proc	ess A	larm H	igh Da	ita Val	lue Ch	annel	7									

	Bit Po	sitior	1													
Word	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														0
47	S	Proce	rocess Alarm Low Data Value Channel 7													
48	S	Alarr	n Dea	d Ban	d Valu	e Chai	nnel 7									
49	Pad	•														

The bits are defined as follows:

- EC = Enable Channel
- Inpt Dta Fm Chlx = Input Data Format Select.
- EA = Enable Alarm.
- AL = Alarm Latch.
- EI = Enable Interrupt.
- Inpt Tp/Rnge Sel Chlx = Input Type/Range Select.
- Inpt Filter Sel Chlx = Input Filter Select.
- Reserved = Allows for future expansion.
- ERTS = Enable Real Time Sample.

Define	To Select	Mal	Make these bit settings													
		15	14	13	12	11	10	9	8	7 4	3	2	1	0		
Input Filter	60 Hz										0	0	0	0		
Selection/ -3 dB	50 Hz										0	0	0	1		
Frequency	10 Hz										0	0	1	0		
	250 Hz										0	0	1	1		
	500 Hz										0	1	0	0		
Enable	Enable								1							
Interrupt	Disable								0							
Process	Enable						1									
Alarm Latch	Disable						0									
Enable	Enable					1										
Process Alarms	Disable					0										
Enable	Enable	1														
Channel	Disable	0														

Define	Indicate this	These I	oit setti	ngs						
		151 1	10	9	8	7 4	3	2	1	0
Input Range Select	-10 to +10V dc						0	0	0	0
Select	0 to 5V dc						0	0	0	1
	0 to 10V dc						0	0	1	0
	4 to 20 mA						0	0	1	1
	1 to 5V dc						0	1	0	0
	0 to 20 mA						0	1	0	1
Input Data Select	Raw/Proportional Counts		0	0	0					
	Engineering Units		0	0	1					
	Scaled for PID		0	1	0					
	Percent Range		0	1	1					

Controller Tags for RSLogix 5000, Version 15 or Later

Use the following controller tags with RSLogix 5000, version 15 or later.

Channel 0 and 1 Configuration Data

Channel 0 and 1 configuration data is shown below. The same information applies to all channels.

+ L + L + L + L + L + L + L + L + L	cal:1:C	AB:1769_IF8	:C:0
+ Lc	Local:1:C.RTSInterval	INT	Decimal
	Local:1:C.RTSEn	BOOL	Decimal
+	Local:1:C.Ch0Filter	SINT	Decimal
	Local:1:C.Ch0AlarmInterruptEn	BOOL	Decimal
	Local:1:C.Ch0AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch0AlarmEn	BOOL	Decimal
	Local1:C.Ch0En	BOOL	Decimal
+	Local:1:C.Ch0Range	SINT	Decimal
+	Local:1:C.Ch0DataFormat	SINT	Decimal
+	Local:1:C.Ch0HAlarmLimit	INT	Decimal
+	Local:1:C.Ch0LAlarmLimit	INT	Decimal
+	Local:1:C.Ch0AlarmDeadband	INT	Decimal
+	Local:1:C.Ch1Filter	SINT	Decimal
	Local:1:C.Ch1AlarmInterruptEn	BOOL	Decimal
	Local:1:C.Ch1AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch1AlarmEn	BOOL	Decimal
	Local:1:C.Ch1En	BOOL	Decimal
+	Local:1:C.Ch1Range	SINT	Decimal
+	Local:1:C.Ch1DataFormat	SINT	Decimal
+	Local:1:C.Ch1HAlarmLimit	INT	Decimal
+	Local:1:C.Ch1LAlarmLimit	INT	Decimal
+	Local:1:C.Ch1AlarmDeadband	INT	Decimal

Tag Name	To Select	Make	e The	se Bi	t Sett	ings ⁽	1)			
		15-8	7	6	5	4	3	2	1	0
Ch#Filter	60 Hz							0	0	0
	50 Hz							0	0	1
	10 Hz							0	1	0
	250 Hz							0	1	1
	500 Hz							1	0	0
Ch#AlarmInterruptEn	Enable									1
	Disable									0
Ch#AlarmLatchEn	Enable									1
	Disable									0
Ch#AlarmEn	Enable									1
	Disable									0
Ch#En	Enable									1
	Disable									0
Ch#Range	-10+10V DC							0	0	0
	05V dc							0	0	1
	010V dc							0	1	0
	420 mA							0	1	1
	15V dc							1	0	0
	020 mA							1	0	1
Ch#DataFormat	Raw/proportional counts								0	0
	Engineering units								0	1
	Scaled for PID								1	0
	Percent range								1	1

⁽¹⁾ All bit positions left blank in table must be set to 0.

Input Data

- Lo	ocal:1:l	AB:1769_IF8:I:0	
+	Local:1:I.Fault	DINT	Binary
+	Local:1:I.Ch0Data	INT	Decimal
+	Local:1:I.Ch1Data	INT	Decimal
+	Local:1:I.Ch2Data	INT	Decimal
+	Local:1:I.Ch3Data	INT	Decimal
+	Local:1:I.Ch4Data	INT	Decimal
+	Local:1:I.Ch5Data	INT	Decimal
+	Local:1:I.Ch6Data	INT	Decimal
+	Local:1:I.Ch7Data	INT	Decimal
+	Local:1:I.RealTimeSample	INT	Decimal
+	Local:1:I.CombinedStatus	SINT	Binary
	Local:1:I.Ch0Status	BOOL	Decimal
	Local:1:I.Ch1Status	BOOL	Decimal
	Local:1:I.Ch2Stattus	BOOL	Decimal
	Local:1:I.Ch3Status	BOOL	Decimal
	Local:1:I.Ch4Status	BOOL	Decimal
	Local:1:I.Ch5Status	BOOL	Decimal
	Local:1:I.Ch6Status	BOOL	Decimal
	Local:1:I.Ch7Status	BOOL	Decimal
+	Local:1:I.Ch0_1Status	SINT	Binary
	Local:1:I.Ch00verRange	BOOL	Decimal
	Local:1:I.Ch0UnderRange	BOOL	Decimal
	Local:1:I.Ch0HAlarm	BOOL	Decimal
	Local:1:I.Ch0LAlarm	BOOL	Decimal
+	Local:1:I.Ch10verRange	BOOL	Decimal
	Local:1:I.Ch1UnderRange	BOOL	Decimal
	Local:1:I.Ch1HAlarm	BOOL	Decimal
	Local:1:I.Ch1LAlarm	BOOL	Decimal

- Lo	ocal:1:l	AB:1769_IF8	:1:0
+	Local:1:I.Ch2_3Status	SINT	Binary
	Local:1:I.Ch2OverRange	BOOL	Decimal
	Local:1:I.Ch2UnderRange	BOOL	Decimal
	Local:1:I.Ch2HAlarm	BOOL	Decimal
	Local:1:I.Ch2LAlarm	BOOL	Decimal
	Local:1:I.Ch3OverRange	BOOL	Decimal
	Local:1:I.Ch3UnderRange	BOOL	Decimal
	Local:1:I.Ch3HAlarm	BOOL	Decimal
	Local:1:I.Ch3LAlarm	BOOL	Decimal
+	Local:1:I.Ch4_5Status	SINT	Binary
	Local:1:I.Ch40verRange	BOOL	Decimal
	Local:1:I.Ch4UnderRange	BOOL	Decimal
	Local:1:I.Ch4HAlarm	BOOL	Decimal
	Local:1:I.Ch4LAlarm	BOOL	Decimal
	Local:1:I.Ch5OverRange	BOOL	Decimal
	Local:1:I.Ch5UnderRange	BOOL	Decimal
	Local:1:I.Ch5HAlarm	BOOL	Decimal
	Local:1:I.Ch5LAlarm	BOOL	Decimal
+	Local:1:I.Ch6_7Status	SINT	Binary
	Local:1:I.Ch6OverRange	BOOL	Decimal
	Local:1:I.Ch6UnderRange	BOOL	Decimal
	Local:1:I.Ch6HAlarm	BOOL	Decimal
	Local:1:I.Ch6LAlarm	BOOL	Decimal
	Local:1:I.Ch7OverRange	BOOL	Decimal
	Local:1:I.Ch7UnderRange	BOOL	Decimal
	Local:1:I.Ch7HAlarm	BOOL	Decimal
	Local:1:I.Ch7LAlarm	BOOL	Decimal

Tag	Bit Indic	ates This						
Name	7	6	5	4	3	2	1	0
Combined Status	Ch7 Status	Ch6 Status	Ch5 Status	Ch4 Status	Ch3 Status	Ch2 Status	Ch1 Status	Ch0 Status
ChO_1 Status	Ch1 LAlarm	Ch1 HAlarm	Ch1 Under Range	Ch1 Over Range	Ch0 LAlarm	Ch0 HAlarm	Ch0 Under Range	Ch0 Over Range
Ch2_3 Status	Ch3 LAlarm	Ch3 HAlarm	Ch3 Under Range	Ch3 Over Range	Ch2 LAlarm	Ch2 HAlarm	Ch2 Under Range	Ch2 Over Range
Ch4_5 Status	Ch5 LAlarm	Ch5 HAlarm	Ch5 Under Range	Ch5 Over Range	Ch4 LAlarm	Ch4 HAlarm	Ch4 Under Range	Ch4 Over Range
Ch6_7 Status	Ch7 LAlarm	Ch7 HAlarm	Ch7 Under Range	Ch7 Over Range	Ch6 LAlarm	Ch6 HAlarm	Ch6 Under Range	Ch6 Over Range

Output Data

Lo	cal:1:0	AB:1769_IF8	:0:0
+	Local:1:0.AlarmUnlatch	INT	Binary
	Local:1:0.Ch0HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch0LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch1HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch1LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch2HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch2LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch3HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch3LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch4HAlarmUnlatch	BOOL	Decimal
	Local:1:0.AlarmUnlatch Local:1:0.Ch0HAlarmUnlatch Local:1:0.Ch0LAlarmUnlatch Local:1:0.Ch1HAlarmUnlatch Local:1:0.Ch1LAlarmUnlatch Local:1:0.Ch2HAlarmUnlatch Local:1:0.Ch2LAlarmUnlatch Local:1:0.Ch3HAlarmUnlatch Local:1:0.Ch3HAlarmUnlatch	BOOL	Binary
	Local:1:0.Ch5HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch5LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch6HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch6LAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch7HAlarmUnlatch	BOOL	Decimal
	Local:1:0.Ch7LAlarmUnlatch	BOOL	Decimal

1769-IF16C

The following I/O memory mapping lets you configure the 1769-IF16C module.

Input Data File

For each module, slot x, words 0...15 in the input data file contain the converted value of the module's analog input channels. Word 16 in the input data file contains the time stamp value, if time stamping is enabled, that corresponds to the module's last input data sampling period. Words 17...21 in the input data file contain status bits for the analog input channels.

_	Bit Po	sition	1													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	0							
1	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	1							
2	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	2							
3	SGN	Anal	Analog Read (Input) Data Value Channel 3													
4	SGN	Anal	Analog Read (Input) Data Value Channel 4													
5	SGN	Anal	Analog Read (Input) Data Value Channel 5													
6	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	6							
7	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	7							
8	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	8							
9	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	9							
10	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	10							
11	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	11							
12	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	12							
13	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	13							
14	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	14							
15	SGN	Anal	og Rea	ad (Inp	ut) Da	ita Val	ue Ch	annel	15							
16	Nu	Time	Stam	p Valu	е											
17	S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0
18	L3	НЗ	U3	03	L2	H2	U2	02	L1	H1	U1	01	LO	H0	U0	00
19	L7	H7	H7 U7 O7 L6 H6 U6 O6 L5 H5 U5 O5 L4 H4 U4 O4													
20	L11	H11	U11	011	L10	H10	U10	010	L9	Н9	U9	09	L8	Н8	U8	08
21	L15	H15	U15	015	L14	H14	U14	014	L13	H13	U13	013	L12	H12	U12	012

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- Nu = Not Used. Bit set to 0.
- Sx = General Status bit for input channels 0...15.
- Ox = Over range flag bits for input channels 0...15.
- Ux = Under range flag bits for input channels 0...15.
- Hx = High Alarm flag bits for input channels 0...15.
- Lx = Low Alarm flag bits for input channels 0...15.

Output Data File

For each module, slot *x*, words 0 and 1 in the output data file contain the cancel latched channel alarm control bits.

	Bit Position															
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	CLL 7	CLH 7	CLL 6	CLH 6	CLL 5	CLH 5	CLL 4	CL H4	CLL 3	CL H3	CLL 2	CL H2	CL L1	CL H1	CL LO	CL H0
1	CLL 15	CLH 15	CLL 14	CLH 14	CLL 13	CLH 13	CLL 12	CL H1 2	CLL 11	CL H1 1	CLL 10	CL H1 0	CL L9	CL H9	CL L8	CL H8

The bits are defined as follows:

- CLHx = Cancel High Process Alarm Latch for Input x. Allows each input high-process-alarm latch to be individually cancelled. Cancel = 1.
- CLLx = Cancel Low Process Alarm Latch for Input x. Allows each input low-process-alarm latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet software, during initial configuration of the system. In that case, graphical screens provided by the programming software simplify configuration.

Some systems, like the 1769-ADN DeviceNet adapter system, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit Po	sitio	n														
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
0	0	Real	Time	Samp	le Valu	ıe									1		
1	ETS	Rese	erved														
2	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel (Ch0	
3	Reserv	ed .					t Data nat Ch		Rese	erved			Inpu Sele	t Type ct Ch(:/Ranç	je	
4	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	0								
5	SGN	Proc	ess A	larm L	ow Da	ta Val	ue Ch	annel ()								
6	SGN	Aları	m Dea	ad Ban	d Valu	e Cha	nnel 0										
7	Reserv	/ed															
8	EC	Rese	erved			EA AL EI ⁽¹⁾ Reserved							Inpu	t Filte	r Sel (Ch1	
9	Reserv	red				Inpu Form	t Data nat Ch	1	Inpu Sele	t Type ct Ch	:/Rano 1	je					
10	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	1								
11	SGN	Proc	ess A	larm L	ow Da	ta Val	ue Ch	annel ´	1								
12	SGN	Aları	m Dea	ad Ban	d Valu	e Cha	nnel 1										
13	Reserv	/ed															
14	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel (Ch2	
15	Reserv	ed .				Inpu Form	t Data nat Ch	12	Rese	erved			Input Type/Range Select Ch2				
16	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	2								
17	SGN	Proc	ess A	larm L	ow Da	ta Val	ue Ch	annel 2	2								
18	SGN	Aları	m Dea	ad Ban	d Valu	e Cha	nnel 2										
19	Reserv	red															
20	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel (Ch3	
21	Reserv	red					t Data nat Ch		Rese	erved			Inpu Sele	t Type ct Ch	:/Rano	је	
22	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	3								
23	SGN	Proc	ess A	larm L	ow Da	ta Val	ue Ch	annel 3	3								
24	SGN	Aları	m Dea	ad Ban	d Valu	e Cha	nnel 3	1									
25	Reserv	red															
26	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel (Ch4	
27	Reserv	red				Input Data Reserved Input Type/I Select Ch4								:/Rano 1	je		
28	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	4				1				
29	SGN	Proc	ess A	larm L	ow Da	ta Val	ue Ch	annel 4	1								
30	SGN	Aları	m Dea	ad Ban	d Valu	e Cha	nnel 4										
31	Reserv	ed															

<u> </u>	Bit Po	sitio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
32	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch5
33	Resen	/ed					t Data nat Ch		Rese	erved			Inpu Sele	t Type ect Ch	/Rang	ge
34	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	5							
35	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel !	5							
36	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 5	j								
37	Reserv	/ed														
38	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch6
39	Resen	/ed					t Data at Ch		Rese	erved			Inpu Sele	t Type ect Ch6	/Rang	ge
40	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	6							
41	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel (6							
42	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 1	6								
43	Reserv	/ed														
44	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch7
45	Reserv	/ed				Inpu Form	t Data nat Ch	1 17	Rese	erved			Inpu Sele	t Type ect Ch7	/Rang 7	ge
46	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	7							
47	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel i	7							
48	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 7	1								
49	Reserv	/ed														
50	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch8
51	Reserv	/ed					t Data nat Ch		Rese	erved			Inpu Sele	t Type ect Ch8	/Rang	ge
52	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	8							
53	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel 8	8							
54	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 8	}								
55	Reserv	/ed														
56	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch9
57	Reserv	/ed				Inpu ⁻ Form	t Data nat Ch	1 19	Rese	erved			Inpu Sele	t Type ect Ch9	/Rang	ge
58	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	9							
59	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel !	9							
60	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 9)								
61	Reserv	/ed														
62	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch10
63	Resen	/ed				Inpu ^r Form	t Data nat Ch	n10	Rese	erved			Inpu Sele	it Type ect Ch1	/Rang 10	ge
64	SGN	Proc	ess Al	arm F	ligh Da	ata Va	lue Ch	annel	10							
65	SGN	Proc	ess Al	arm L	ow Da	ıta Val	ue Ch	annel	10							
66	SGN	Alar	m Dea	d Ban	d Valu	ie Cha	nnel 1	0								

Б	Bit Po	sitio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
67	Reserv	/ed		Ĭ	<u>I</u>		<u>I</u>	<u>I</u>					I	I		
68	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch11
69	Reserv	red				Inpu Form	t Data nat Ch	11	Rese	erved			Inpu Sele	t Type ct Ch	/Rano	je
70	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	11							
71	SGN	Proc	ess A	larm L	ow Da	ıta Val	ue Ch	annel 1	1							
72	SGN	Aları	m Dea	ad Ban	d Valu	ie Cha	nnel 1	1								
73	Reserv	red														
74	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch12
75	Reserv	/ed				Inpu Form	t Data nat Ch	12	Rese	erved			Inpu Sele	t Type ct Ch	/Rano 12	je
76	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	12							
77	SGN	Proc	ess A	larm L	ow Da	ıta Val	ue Ch	annel 1	12							
78	SGN	Aları	m Dea	ad Ban	d Valu	ie Cha	nnel 1	2								
79	Reserv	/ed														
80	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch13
81	Reserv	/ed					t Data nat Ch		Rese	erved			Inpu Sele	t Type ct Ch	/Rano 13	је
82	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	13							
83	SGN	Proc	ess A	larm L	ow Da	ıta Val	ue Ch	annel 1	13							
84	SGN	Aları	m Dea	ad Ban	d Valu	ie Cha	nnel 1	3								
85	Reserv	/ed														
86	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch14
87	Reserv	/ed					t Data nat Ch		Rese	erved			Inpu Sele	t Type ct Ch	/Rano 14	је
88	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	14							
89	SGN	Proc	ess A	larm L	ow Da	ıta Val	ue Ch	annel 1	14							
90	SGN	Aları	m Dea	ad Ban	d Valu	ie Cha	nnel 1	4								
91	Reserv	/ed														
92	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel	Ch15
93	Reserv	/ed				Inpu Form	t Data nat Ch	15	Rese	erved			Inpu Sele	t Type ct Ch	/Rano 15	је
94	SGN	Proc	ess A	larm H	igh Da	ata Va	lue Ch	annel	15							
95	SGN	Proc	ess A	larm L	ow Da	ita Val	ue Ch	annel 1	15							
96	SGN	Aları	m Dea	ad Ban	d Valu	ie Cha	nnel 1	5								
97	Reserv	/ed														

The bits are defined as follows:

- SGN = Sign bit in 2's complement format
- Real Time Sample Value = Provides the ability to configure the Real Time Sample Rate
- ETS = Enable Time Stamping
- EC = Enable Channel
- EA = Enable Alarm
- AL = Alarm Latch
- EI = Enable Input Process Alarm Interrupt⁽¹⁾
- Input Filter Sel Chx = Input Channel Filter Setting
- Input Data Format Chx = Input Data Format Select
- Input Type/Range Select Chx = Input Type/Range Select
- Process Alarm High Data Value Channel x = Provides the ability to configure the Input Process Alarm High Value
- Process Alarm Low Data Value Channel *x*= Provides the ability to configure the Input Process Alarm Low Value
- Alarm Dead Band Value Channel x = Provides the ability to configure the Dead Band Value

Define	To Choose	Ma	ke th	ese b	it se	ttings	;										
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Input Filter	60 Hz													0	0	0	0
Selection	50 Hz													0	0	0	1
	16 Hz													0	0	1	0
	315 Hz													0	0	1	1
	1365 Hz													0	1	0	0
Enable Interrupt ⁽¹⁾	Enable								1								
interrupt	Disable								0								
Process	Enable							1									
Alarm Latch	Disable							0									
Enable	Enable						1										
Process Alarms	Disable						0										
Enable Channel	Enable	1															
CHAIIIEI	Disable	0															

⁽¹⁾ Alarm interrupts are not supported by all bus masters. Check your controller's user manual to determine if expansion I/O interrupts are supported.

Define	To Choose	Ma	ke th	ese b	it se	ttings	5										
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Input Range	420 mA													0	0	0	0
Select	020 mA													0	0	0	1
Input Data	Proportional Counts						0	0	0								
Format Select	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-IF16V

The following I/O memory mapping lets you configure the 1769-IF16V module.

Input Data File

For each module, slot x, words 0...15 in the input data file contain the converted value of the module's analog input channels. Word 16 in the input data file contains the time stamp value, if time stamping is enabled, that corresponds to the module's last input data sampling period. Words 17...21 in the input data file contain status bits for the analog input channels.

	Bit Po	ositio														
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	0							
1	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	1							
2	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	2							
3	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	3							
4	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	4							
5	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	5							
6	SGN	Anal	alog Read (Input) Data Value Channel 6													
7	SGN	Anal														
8	SGN	Anal	alog Read (Input) Data Value Channel 7 alog Read (Input) Data Value Channel 8													
9	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	9							
10	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	10							
11	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	11							
12	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	12							
13	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	13							
14	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	14							
15	SGN	Anal	og Re	ad (Inp	out) Da	ata Va	lue Ch	annel	15							
16	Nu	Time	Stam	ıp Valu	ie											

	Bit Po	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
17	S15	S 14	S 13	S 12	S 11	S 10	S9	S8	S7	S6	S5	S4	S3	S2	S1	SO
18	L3	НЗ	U3	03	L2	H2	U2	02	L1	H1	U1	01	LO	H0	U0	00
19	L7	H7	U7	07	L6	Н6	U6	06	L5	H5	U5	05	L4	H4	U4	04
20	L11	H 11	U 11	0 11	L 10	H 10	U 10	0 10	L9	H9	U9	09	L8	Н8	U8	08
21	L15	H 15	U 15	0 15	L 14	H 14	U 14	0 14	L 13	H 13	U 13	0 13	L 12	H 12	U 12	0 12

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- Nu = Not Used. Bit set to 0.
- Sx = General Status bit for input channels 0...15.
- Ox = Over range flag bits for input channels 0...15.
- Ux = Under range flag bits for input channels 0...15.
- Hx = High Alarm flag bits for input channels 0...15.
- Lx = Low Alarm flag bits for input channels 0...15.

Output Data File

For each module, slot *x*, words 0 and 1 in the output data file contain the cancel latched channel alarm control bits.

- E	Bit P	ositior	1													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH
	7	7	6	6	5	5	4	4	3	3	2	2	1	1	0	0
1	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH	CLL	CLH
	15	15	14	14	13	13	12	12	11	11	10	10	9	9	8	8

The bits are defined as follows:

- CLHx = Cancel High Process Alarm Latch for Input x. Allows each input high-process-alarm latch to be individually cancelled. Cancel = 1.
- CLLx = Cancel Low Process Alarm Latch for Input x. Allows each input low-process-alarm latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens provided by the programming software simplify configuration.

Some systems, like the 1769-ADN DeviceNet adapter system, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

ē	Bit Po	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	0	Real	Time	Sampl	le Val	ue										
1	ETS	Rese	erved													
2	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel C	h0
3	Reser	ved					t Data lat Ch		Rese	erved				t Type ct Ch(/Rang)	е
4	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	0							
5	SGN	Proc	ess Al	arm Lo	ow Da	ita Val	ue Ch	annel ()							
6	SGN	Aları	m Dea	d Ban	d Valu	ıe Cha	nnel 0									
7	Reser	ved														
8	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel C	h1
9	Reser	ved	Format Ch1 Select Ch1 Process Alarm High Data Value Channel 1										е			
10	SGN	Proc														
11	SGN	Proc	Process Alarm Low Data Value Channel 1 Alarm Dead Band Value Channel 1													
12	SGN															
13	Reser	ved	Format Ch1 Select Ch1 Process Alarm High Data Value Channel 1 Process Alarm Low Data Value Channel 1 Alarm Dead Band Value Channel 1 ed Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch													
14	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel C	h2
15	Reser	ved							Rese	erved						е
16	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	2							
17	SGN	Proc	ess Al	arm Lo	ow Da	ita Val	ue Ch	annel 2	2							
18	SGN	Aları	m Dea	d Ban	d Valu	ıe Cha	nnel 2									
19	Reser	ved														
20	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel C	h3
21	Reser	ved					t Data lat Ch		Rese	erved				t Type ct Ch3	/Rang }	е
22	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	3							
23	SGN	Proc	ess Al	arm Lo	ow Da	ita Val	ue Ch	annel 3	3							
24	SGN	Aları	m Dea	d Ban	d Valu	ıe Cha	nnel 3									
25	Reser	ved														
26	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	t Filte	r Sel C	h4

The served The	-	Bit Po	ositio	n													
Format Ch4 Select Ch4	Wor	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
SGN	27	Reserv	ved	ı	ı					Rese	erved			Inpu Sele	it Type ect Ch	e/Rang	е
30 SGN Alarm Dead Band Value Channel 4	28	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	4							
1	29	SGN	Proc	ess Al	arm Lo	w Da	ta Val	ue Ch	annel 4	ļ.							
SGN	30	SGN	Aları	n Dea	d Band	d Valu	ie Cha	nnel 4									
Input Data Format Ch5 Reserved Input Type/Range Select Ch5	31	Resen	ved														
Format Ch5 Select Ch5	32	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	ıt Filte	r Sel C	h5
SGN Process Alarm Low Data Value Channel 5	33	Reserv	ved				Inpu ⁻ Form	t Data nat Ch	15	Rese	erved			Inpu Sele	it Type ect Ch	e/Rang	е
SGN Alarm Dead Band Value Channel 5	34	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	5							
37 Reserved 38 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch6 39 Reserved Input Data Format Ch6 40 SGN Process Alarm High Data Value Channel 6 41 SGN Process Alarm Low Data Value Channel 6 42 SGN Alarm Dead Band Value Channel 16 43 Reserved Input Type/Range Select Ch7 45 Reserved EA AL EI ⁽¹⁾ Reserved Input Type/Range Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm High Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm High Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved Input Data Format Ch8 56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Type/Range Select Ch8 57 Reserved Input Data Format Ch8 58 Reserved Input Data Reserved Input Type/Range Select Ch9 59 SGN Process Alarm High Data Value Channel 8 58 SGN Process Alarm Low Data Value Channel 8 59 Reserved Input Data Reserved Input Filter Sel Ch9 50 Reserved Input Data Reserved Input Type/Range Select Ch9 50 Reserved Input Data Reserved Input Filter Sel Ch9 50 Reserved Input Data Reserved Input Filter Sel Ch9 50 Reserved Input Data Reserved Input Filter Sel Ch9 50 SGN Process Alarm Low Data Value Channel 9 50 SGN Process Alarm High Data Value Channel 9	35	SGN	Proc	ess Al	arm Lo	w Da	ta Val	ue Ch	annel 5	<u></u>							
Beserved Beserved	36	SGN	Aları	n Dea	d Band	d Valu	ie Cha	nnel 5									
Input Data Reserved Input Type/Range Select Ch6	37	Reser	ved														
Format Ch6 Select Ch6 40 SGN Process Alarm High Data Value Channel 6 41 SGN Process Alarm Low Data Value Channel 6 42 SGN Alarm Dead Band Value Channel 16 43 Reserved EA AL EI(1) Reserved Input Filter Sel Ch7 45 Reserved Input Data Format Ch7 Reserved Input Type/Range Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved Input Data Reserved Input Filter Sel Ch8 51 Reserved Input Data Reserved Input Filter Sel Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm High Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved Input Channel 8 56 EC Reserved EA AL EI(1) Reserved Input Filter Sel Ch9 57 Reserved Input Data Reserved Input Filter Sel Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	38	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	ıt Filte	r Sel C	h6
41 SGN Process Alarm Low Data Value Channel 6 42 SGN Alarm Dead Band Value Channel 16 43 Reserved 44 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch7 45 Reserved Input Data Format Ch7 Reserved Input Type/Range Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Input Type/Range Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Filter Sel Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9	39	Reserv	ved							Rese	erved			Inpu Sele	it Type ect Ch	e/Rang 6	е
42 SGN Alarm Dead Band Value Channel 16 43 Reserved 44 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch7 45 Reserved Input Data Format Ch7 Reserved Input Type/Range Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Input Type/Range Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Filter Sel Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9	40	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	6							
43 Reserved 44 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch7 45 Reserved Input Data Format Ch7 Reserved Input Type/Range Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Input Type/Range Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved Input Data Reserved Input Filter Sel Ch9 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Reserved Input Data Reserved Input Filter Sel Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	41	SGN	Proc	ess Al	arm Lo	w Da	ta Val	ue Ch	annel 6	3							
All EC Reserved EA AL EII Reserved Input Filter Sel Ch7	42	SGN	Aları	n Dea	d Band	d Valu	ie Cha	nnel 1	6								
Input Data Format Ch7 Reserved Input Type/Range Select Ch7	43	Resen	ved														
Format Ch7 Select Ch7 46 SGN Process Alarm High Data Value Channel 7 47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch8 50 EC Reserved EA AL El ⁽¹⁾ Reserved Input Type/Range Select Ch8 51 Reserved Input Data Reserved Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Type/Range 57 Reserved Input Data Reserved Input Type/Range 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9 50 SGN Alarm Dead Band Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	44	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	ıt Filte	r Sel C	h7
47 SGN Process Alarm Low Data Value Channel 7 48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm High Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	45	Reser	ved				Inpu [*] Form	t Data nat Ch	17	Rese	erved			Inpu Sele	it Type ect Ch	e/Range 7	е
48 SGN Alarm Dead Band Value Channel 7 49 Reserved 50 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Input Type/Range Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	46	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	7							
49 Reserved 50 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 50 SGN Alarm Dead Band Value Channel 9	47	SGN	Proc	ess Al	arm Lo	w Da	ta Val	ue Ch	annel 7	'							
50 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch8 51 Reserved Input Data Format Ch8 Reserved Input Type/Range Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	48	SGN	Aları	n Dea	d Band	d Valu	ie Cha	nnel 7	1								
Input Data Format Ch8 Reserved Input Type/Range Select Ch8	49		ved														
Format Ch8 Select Ch8 52 SGN Process Alarm High Data Value Channel 8 53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	50	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	ıt Filte	r Sel C	h8
53 SGN Process Alarm Low Data Value Channel 8 54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	51	Reserv	ved				Inpu Form	t Data nat Ch	18	Rese	erved			Inpu Sele	it Type ect Ch	e/Range B	e
54 SGN Alarm Dead Band Value Channel 8 55 Reserved 56 EC Reserved EA AL El ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	52	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	В							
55 Reserved 56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	53	SGN	Proc	ess Al	arm Lo	ow Da	ta Val	ue Ch	annel 8	}							
56 EC Reserved EA AL EI ⁽¹⁾ Reserved Input Filter Sel Ch9 57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	54	SGN	Aları	n Dea	d Ban	d Valu	ie Cha	nnel 8	}								
57 Reserved Input Data Format Ch9 Reserved Input Type/Range Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	55	Reser	ved														
Format Ch9 Select Ch9 58 SGN Process Alarm High Data Value Channel 9 59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	56	EC	Rese	erved			EA	AL	EI ⁽¹⁾	Rese	erved			Inpu	ıt Filte	r Sel C	h9
59 SGN Process Alarm Low Data Value Channel 9 60 SGN Alarm Dead Band Value Channel 9	57	Reserv	ved				Inpu Form	t Data nat Ch	19	Rese	erved			Inpu Sele	it Type ect Ch	e/Rang	e
60 SGN Alarm Dead Band Value Channel 9	58	SGN	Proc	ess Al	arm H	igh Da	ata Va	lue Ch	annel	9							
	59	SGN	Proc	ess Al	arm Lo	w Da	ta Val	ue Ch	annel 9	}							
61 Reserved	60	SGN	Alan	n Dea	d Band	d Valu	ie Cha	nnel 9									
	61	Reser	ved														

_	15 EC	14	13	ı												
62 I	EC		13	12	11	10	09	08	07	06	05	04	03	02	01	00
-		Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved		1	Inpu	t Filte	r Sel C	ch10
63 I	Reserv	ed					t Data lat Ch		Rese	rved			Inpu Sele	t Type ct Ch	/Rang 10	е
64	SGN	Proce	ess Al	arm H	igh Da	ata Va	lue Ch	annel	10							
65	SGN	Proce	ess Al	arm Lo	w Da	ta Val	ue Cha	annel 1	0							
66	SGN	Alarr	n Dea	d Ban	d Valu	e Cha	nnel 1	0								
67 I	Reserv	red														
68 I	EC	Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved			Inpu	t Filte	r Sel C	:h11
69 I	Reserv	red				Input Form	t Data ıat Ch	11	Rese	rved			Inpu Sele	t Type ct Ch	/Rang 11	е
70	SGN	Proce	ess Al	arm H	igh Da	ata Va	lue Ch	annel	11							
71	SGN	Proce	ess Al	arm Lo	w Da	ta Val	ue Cha	annel 1	1							
72	SGN	Alarr	n Dea	d Ban	d Valu	e Cha	nnel 1	1								
73 I	Reserv	red														
74 I	EC	Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved			Inpu	t Filte	r Sel C	:h12
75	Reserv	ed					t Data lat Ch		Rese	rved			Inpu Sele	t Type ct Ch	/Rang 12	е
76	SGN	Proce	ocess Alarm High Data Value Channel 12													
77	SGN	Proce	rocess Alarm High Data Value Channel 12 rocess Alarm Low Data Value Channel 12													
78	SGN	Alarr	n Dea	d Ban	d Valu	e Cha	nnel 1	2								
79 I	Reserv	red														
80 I	EC	Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved			Inpu	t Filte	r Sel C	h13
81	Reserv	red				Input Form	t Data lat Ch	13	Rese	rved			Inpu Sele	t Type ct Ch	/Rang 13	е
82	SGN	Proce	ess Al	arm H	igh Da	ata Va	lue Ch	annel	13							
83	SGN	Proce	ess Al	arm Lo	w Da	ta Val	ue Cha	annel 1	3							
84	SGN	Alarr	n Dea	d Ban	d Valu	e Cha	nnel 1	3								
85 I	Reserv	red														
86 I	EC	Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved			Inpu	t Filte	r Sel C	h14
87	Reserv	ed					t Data lat Ch		Rese	rved			Inpu Sele	t Type ct Ch	/Rang 14	е
88	SGN	Proce	ess Al	arm H	igh Da	ata Va	lue Ch	annel	14							
89	SGN	Proce	ess Al	arm Lo	w Da	ta Val	ue Cha	annel 1	4							
90	SGN	Alarr	n Dea	d Ban	d Valu	e Cha	nnel 1	4								
91 I	Reserv	red														
92 I	EC	Rese	rved			EA	AL	EI ⁽¹⁾	Rese	rved			Inpu	t Filte	r Sel C	h15
93	Reserv	red				Input Form	t Data lat Ch	15	Rese	rved			Inpu Sele	t Type	/Rang 15	е
94	SGN	Proce	ess Al	arm H	igh Da	ata Va	lue Ch	annel	15				1			

	Bit Po	sitio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
95	SGN	Proce	cess Alarm Low Data Value Channel 15													
96	SGN	Alarr	n Dea	d Ban	d Valu	ie Cha	nnel 1	5								
97	Reser	ved														

The bits are defined as follows:

- SGN = Sign bit in 2's complement format
- Real Time Sample Value = Provides the ability to configure the Real Time Sample Rate
- ETS = Enable Time Stamping
- EC = Enable Channel
- EA = Enable Alarm
- AL = Alarm Latch
- EI = Enable Input Process Alarm Interrupt⁽¹⁾
- Input Filter Sel Chx = Input Channel Filter Setting
- Input Data Format Chx = Input Data Format Select
- Input Type/Range Select Chx = Input Type/Range Select
- Process Alarm High Data Value Channel x = Provides the ability to configure the Input Process Alarm High Value
- Process Alarm Low Data Value Channel x = Provides the ability to configure the Input Process Alarm Low Value
- Alarm Dead Band Value Channel x = Provides the ability to configure the Dead Band Value

Define	To Choose	Ma	ke tl	iese	bit s	ettii	ngs										
		15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Input Filter	60 Hz													0	0	0	0
Selection	50 Hz													0	0	0	1
	16 Hz													0	0	1	0
	315 Hz													0	0	1	1
	1365 Hz													0	1	0	0
Enable Interrupt ⁽¹⁾	Enable								1								
merrupt	Disable								0								
Process	Enable							1									
Alarm Latch	Disable							0									
Enable	Enable						1										
Process Alarms	Disable						0										

⁽¹⁾ Alarm interrupts are not supported by all bus masters. Check your controller's user manual to determine if expansion I/O interrupts are supported.

Define	To Choose	Ma	ke tl	iese	bit s	settii	ngs										
		15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Enable	Enable	1															
Channel	Disable	0															
Input	-10+10V													0	0	0	0
Range Select	05V													0	0	0	1
	010V													0	0	1	0
	15V													0	0	1	1
Input Data Format	Proportional Counts						0	0	0								
Select	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-IG16

The following I/O memory mapping lets you configure the 1769-IG16 module.

Input Data File

For each module, slot x, word 0 in the input data file contains the state of the module's input points. The module implements inverted logic on the TTL inputs. A logix low-input voltage results in the corresponding Input Data File bit being set to 1. A logic high-input voltage results in the corresponding bit being cleared to 0.

- P	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

Configuration File

The read/writable configuration data file allows the setup of the digital filter settings for each of the two input groups. Group 0 is inputs 0...7 and Group 1 is inputs 8...15.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet software, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Filter Time On to Off Group 1 Filter Time Off to On Group 0 Filter Time On to Off Group 0 Filter Time Off to On Group 0															
1	0000	00000	000000	000												
2	0000	00000	000000	000												
3	0000	00000	000000	000												

Filter Time ⁽¹⁾	Bit Setting
8.0 ms	0000
4.0 ms	0001
2.0 ms	0010
1.0 ms	0011
0.5 ms	0100
0.1 ms	0101
0.0 ms	0110

⁽¹⁾ Filter Time: Word 0, the Filter Time configures the 0N to 0FF and 0FF to 0N hardware delay times for each input group.

1769-IM12

The following I/O memory mapping lets you configure the 1769-IM12 module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points. For the 1769-IM12, bits 12 to 15 are not used.

	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

1769-IQ16

The following I/O memory mapping lets you configure the 1769-IQ16 module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points.

2	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

1769-IQ16F

The following I/O memory mapping lets you configure the 1769-IQ16F module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points.

	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

Configuration File

The read/writable configuration data file allows the setup of the digital filter settings for each of the two input groups. Group 0 is inputs 0...7. Group 1 is inputs 8...15.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

5	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Filter Grou		On to	Off	Filter Grou		Off to	On	Filter Grou		On to	Off	Filte Grou		Off to	On
1	0000	00000	000000	000												
2	0000	00000	000000	000												
3	0000	00000	000000	000												

Filter Time ⁽¹⁾	Bit Setting
2.0 msec	0010
1.0 msec	0011
0.5 msec	0100
0.1 msec	0101
0.0 msec	0110

⁽¹⁾ Filter Time: Word 0, the Filter Time configures the ON to OFF and OFF to ON hardware delay times for each input group.

1769-1032

The following I/O memory mapping lets you configure the 1769-IQ32 module.

Input Data File

For each input module, slot *x*, word 0 in the input data file contains the current state of the field input points.

5	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
1	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

1769-IQ32T

The following I/O memory mapping lets you configure the 1769-IQ32T module.

Input Data File

For each input module, slot x, words 0 and 1 in the input data file contain the current state of the field input points.

5	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
1	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

Configuration File

For each input module, slot x, words 0 and 1 in the configuration file control the amount of filtering applied to the signals from the field input points. The amount of filtering applied can be configured individually for both the On-to-Off and Off-to-On edges of each isolated group of input signals.

5	Bit F	Positio	on													
Ň	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Filter group	confi p 2 On	guratio -to-Of	on f		r confi p 2 Of					guratio -to-Of		Filte grou	r confi p 1 Of		
1			guratio -to-Of		Filter grou	r confi p 4 Of	guration f-to-Or	on 1	Filter grou	r confi p 3 On	guratio -to-Of	on f	Filte grou	r confi p 3 Of	guration f-to-Or	on 1

OFF_Filter or ON_Filter (Binary)	Filter Time
0000 (default)	8.0 ms
0001	4.0 ms
0010	2.0 ms
0011	1.0 ms
0100	0.5 ms
0101	0.1 ms
0110	0.0 ms
01111111	Not used

1769-IQ6XOW4

The following I/O memory mapping lets you configure the 1769-IQ6XOW4 module.

Input Data File

For the inputs on this module, slot *x*, word 0 in the input data file contains the current state of the field input points. For the 1769-IQ6XOW4, bits 6 to 15 are not used.

For the outputs on this module, slot *x*, input data file word 1 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

For the 1769-IQ6XOW4, bits 4 to 15 are not used.

5	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r
1	0	0	0	0	0	0	0	0	0	0	0	0	r	r	r	r

(1) r = read.

IMPORTANT

Input data file word 1 reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot x, word 0 in the output data file contains the control program's directed state of the discrete output points. For the 1769-IQ6XOW4, bits 4 to 15 are not used.

	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	w ⁽¹⁾	W	W	W

(1) w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

ord	Bit F	Positi	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Program State for Output Array Word 0															

5	Bit F	Positi	on													
Word	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													0		
2	Prog	Program Value for Output Array Word 0														
3	Fault	Fault State for Output Array Word 0														
4	Fault	Value	for O	utput ,	Array \	Nord (0									

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-IR6

The following I/O memory mapping lets you configure the 1769-IR6 module.

Input Data File

The first six words (0...5) of the input data file contain the analog RTD or resistance values of the inputs. Words 6 and 7 provide sensor/channel status feedback for use in your control program as shown below.

2	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	RTD/resistance Input Data Channel 0															
1	RTD/resistance Input Data Channel 1															
2	RTD/resistance Input Data Channel 2															
3	RTD/resistance Input Data Channel 3															
4	RTD/re	sistan	ce Inp	ut Dat	a Cha	nnel 4										
5	RTD/res	sistan	ce Inp	ut Dat	a Cha	nnel 5										
6	Not Used OC 5 OC 4 OC 2 OC 2 OC 1 OC 0 OC 0 Not Used S5 S4 S3 S2 S1 S0										S0					
7	U0	00	U1	01	U2	02	U3	03	U4	04	U5	05	Not	Used		

Word 6 and 7 status bits are defined as follows:

- Sx = General status bit for channels 0 through 5. This bit is set (1) when an error (over- or under-range, open-circuit, or input data not valid) exists for that channel. An input data not valid condition is determined by the user program. This condition occurs when the first analog-to-digital conversion is still in progress at power-up or after a new configuration has been sent to the module. Refer to the RTD/resistance Input Module User Manual, publication number 1769-UM005, for details.
- OCx = Open-circuit detection bit for channels 0 through 5. These bits are set (1) when either an open or shorted input for RTD inputs or an open input for resistance inputs is detected.
 - TIP Short-circuit detection for resistance inputs is not indicated because 0 is a valid number..
- Ux = Under-range flag bits for channels 0 through 5, using RTD inputs only. These bits can be used in the control program for error detection. There is no under-range error for a direct resistance input, because 0 is a valid number.
- Ox = Over-range flag bits for channels 0 through 5, using either RTD or resistance inputs. These bits can be used in the control program for error detection.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programming tool to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. Refer to the Compact RTD/resistance Input Module User Manual, publication number 1769-UM005 for additional details.

Words 0...5 of the configuration file allow you to change the parameters of each channel independently. For example, word 0 corresponds to channel 0 and word 1 corresponds to channel 1. The functional arrangement of the bits is shown below for a single word/channel.

To Sel	ect	Ma	ke th	iese	bit s	ettin	gs										
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10 Hz														1	1	0
c	60 Hz														0	0	0
Filter Frequency	50 Hz														0	0	1
er Fre	250Hz														0	1	1
Filte	500 Hz														1	0	0
	1 kHz														1	0	1
Excitation Current	1.0 mA													0			
Excita	0.5 mA													1			
Lead nsatio	Enable												0				
Cyclic Lead Compensatio	Disable												1				
Έ, Έ,	Upscale										0	0					
circu n Inp	Downscale										0	1					
Open-circuit/ Broken Input	Last State										1	0					
	Zero									0	1	1					
rature Vlode	°C									0							
Temperature Units Mode	°F									1							
	100 Ω Pt 385					0	0	0	0								
	200 Ω Pt 385					0	0	0	1								
	500 Ω Pt 385					0	0	1	0								
	1000 Ω Pt 385					0	0	1	1								
	100 Ω Pt 3916					0	1	0	0								
	200 Ω Pt 3916					0	1	0	1								
or Type	500 Ω Pt 3916					0	1	1	0								
Input/Sensor Type	1000 Ω Pt 3916					0	1	1	1								
Inpu	10 Ω Cu 426					1	0	0	0								
	120 Ω Ni 618					1	0	0	1								
	120 Ω Ni 672					1	0	1	0								
	604ΩNiFe 518					1	0	1	1								
	150Ω					1	1	0	0								
	500Ω					1	1	0	1								
	1000Ω					1	1	1	0								
	3000Ω					1	1	1	1								

To Sel	ect	Ma	ke tl	iese	bit s	ettin	gs										
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Raw/ Proportional		0	0	0												
at	Engineering Units		0	0	1												
Data Format	Engineering Units X 10		1	0	0												
Da	Scaled-for- PID		0	1	0												
	Percent Range		0	1	1												
Enable Channe	Enable	1															
Ena Cha	Disable	0															

Module Configuration Word

Word 6 of the configuration data file contains the Enable/Disable Cyclic Calibration bit as shown in the table below.

To Select		Ma	ke th	ese	bit s	etting	js										
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Enable/	Enabled ⁽¹⁾																0
Disable Cyclic Calibration	Disabled																1

⁽¹⁾ When enabled, an autocalibration cycle is performed on all enabled channels every 5 minutes.

1769-IT6

The following I/O memory mapping lets you configure the 1769-IT6 module.

Input Data File

The input data file contains the analog values of the inputs.

	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Analog	Input	Data (Chann	el O											
1	Analog	Input	Data (Chann	el 1											
2	Analog	Input	Data (Chann	el 2											
3	Analog	Input	Data (Chann	el 3											
4	Analog	Input	Data (Chann	el 4											
5	Analog	Input	Data (Chann	el 5											
6	OC7	0C 6	0C 5	OC 4	0C 3	0C 2	OC 1	0C 0	S7	S6	S5	S4	S3	S2	S1	S0
7	U0	00	U1	UO	U2	02	U3	03	U4	04	U5	05	U6	06	U7	07

The bits are defined as follows:

• Sx = General status bit for channels 0...5 and CJC sensors (S6 and S7). This bit is set (1) when an error (over-range, under-range, open-circuit, or input data not valid) exists for that channel. An 'input data not valid' condition is determined by the user program. This condition occurs when the first analog-to-digital conversion is still in progress, and after a new configuration has been sent to the module. Refer to the Compact I/O Thermocouple/mV Input Module User Manual, publication 1769-UM004 for additional details.

- OCx = Open-circuit detection bits indicate an open input circuit on channels 0...5 (OC0...OC5) and on CJC sensors CJC0 (OC6) and CJC1 (OC7). The bit is set (1) when an open-circuit condition exists.
- Ux = Under-range flag bits for channels 0...5 and the CJC sensors (U6 and U7). For thermocouple inputs, the under-range bit is set (1) when a temperature measurement is below the normal operating range for a given thermocouple type. For millivolt inputs, the under-range bit indicates a voltage that is below the normal operating range. These bits can be used in the control program for error detection. The bits are reset (0) by the module when within the normal operating range.
- Ox = Over-range flag bits for channels 0...5 and the CJC sensors (O6 and O7). For thermocouple inputs, the over-range bit is set (1) when a temperature measurement is above the normal operating range for a given thermocouple type. For millivolt inputs, the over-range bit indicates a voltage that is above the normal operating range. These bits can be used in the control program for error detection.

Configuration Data File

During initial system configuration, you normally manipulate the bits from the configuration data file with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet. Graphical screens simplify configuration. However, some products, like the 1769-ADN DeviceNet adapter, also let you alter the bits as part of the control program, by using communication rungs. In this case, you need to understand the bit arrangement. Refer to the Compact Thermocouple/mV Input Module User Manual, publication 1769-UM004, for additional details.

Words 0...5 of the configuration data file let you change the parameters of each channel independently. For example, word 0 corresponds to channel 0. See the functional arrangement of the bits for a single word/channel in the Configuration Data File on page 106.

Configuration Data File

To	select	Ма	ke tl	iese	bit s	ettir	ıgs										
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10 Hz													•	1	1	0
ιcλ	60 Hz														0	0	0
Filter Frequency	50 Hz														0	0	1
er Fre	250Hz														0	1	1
Ħ	500 Hz														1	0	0
	1 kHz														1	0	1
÷	Upscale										0	0					
Open-circuit	Downscale										0	1					
ben-	Hold Last State										1	0					
0	Zero										1	1					
.dı	°C									0							
Temp.	°F									1							
	Thermocouple J					0	0	0	0								
	Thermocouple K					0	0	0	1								
	Thermocouple T					0	0	1	0								
	Thermocouple E					0	0	1	1				Not Used ⁽¹⁾				
90	Thermocouple R					0	1	0	0				ot Us				
Input Type	Thermocouple S					0	1	0	1				Z				
du	Thermocouple B					0	1	1	0								
	Thermocouple N					0	1	1	1								
	Thermocouple C					1	0	0	0								
	-5050 mV					1	0	0	1								
	-100100 mV					1	0	1	0								
	Raw/Proportional Data		0	0	0												
nat	Engineering Units		0	0	1												
Data Forma	Engineering Units <i>x</i> 10		1	0	0												
Ó	Scaled-for-PID		0	1	0												
	Percent Range		0	1	1												
ole Je	Disabled	0															
Enable	Enabled	1															

⁽¹⁾ An attempt to write any nonvalid (spare) bit configuration into any selection field results in a module configuration error.

TIP Program defaults are indicated by 0 values. For example, type J thermocouple is the default (no user intervention) thermocouple type.

Module Configuration Word

Word 6 of the configuration data file contains the Enable/Disable Cyclic Calibration bit.

To select		Ма	ke th	ese	bit s	ettin	gs										
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Enable/	Enabled ⁽¹⁾																0
Disable Cyclic Calibration	Disabled																1

⁽¹⁾ When enabled, an autocalibration cycle is performed on all enabled channels every 5 minutes.

1769-0A8

The following I/O memory mapping lets you configure the 1769-OA8 module.

Output Module's Input Data File

For each module, slot *x*, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

For the 1769-OA8, bits 8 to 15 are not used.

5	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r

⁽¹⁾ r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot x, word 0 in the output data file contains the control program's directed state of the discrete output points. For the 1769-OA8, bits 8...15 are not used.

	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	w ⁽¹⁾	W	W	W	W	W	W	W

⁽¹⁾ w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

D.	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0															
1	Program State for Output Array Word 0															
2	Program Value for Output Array Word 0															
3	Fault State for Output Array Word 0															
4	Fault	Value	for O	utput ,	Array \	Nord (0									

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting					
Program	0					
Fault	1					

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0A16

The following I/O memory mapping lets you configure the 1769-OA16 module.

Output Module's Input Data File

For each module, slot *x*, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon the:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

p	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

Data output bits are turned on or off using the bit positions in Word 0.

- 1 = output on
- 0 = output off

EXAMPLE To turn on bit position 12, type 1 in word 0, bit 12.

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

ē	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

(1) w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

5	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Program State for Output Array Word 0															
2	Prog	ram Va	alue fo	or Outp	out Arr	ay Wo	ord 0									
3	Fault State for Output Array Word 0															
4	Fault	Fault Value for Output Array Word 0														

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting in a change to the Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0B8, Series A

The following I/O memory mapping lets you configure the 1769-OB8, Series A module.

Output Module's Input Data File

For each module, slot x, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

5	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

5	Bit F	Positi	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	w ⁽¹⁾	W	W	W	W	W	W	W

(1) w = write

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	0	0	0	0	0	0	0	0	Program State for Output Array Word 0							
2	0	0	0	0	0	0	0	0	Prog	ram Va	alue fo	r Outp	ut Arr	ay Wo	ord 0	
3	0	0	0	0	0	0	0	0	Fault State for Output Array Word 0							
4	0	0	0	0	0	0	0	0	Fault	t Value	for O	utput /	۹rray ۱	Nord ()	

Program to Fault Enable Bit (PFE), Word 0 Bit 0

Allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Program State, Word 1

Selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value, Word 2

Defines the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State, Word 3

Selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting						
User-defined Safe State	0						
Hold Last State	1						

Fault Value, Word 4

Defines the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Module Default Condition

The modules default condition is all zeros, which defines these conditions:

Word or Bit Affected		Condition Applied				
Word 0, Bit 0:	Program-to-Fault Enable	Program Value				
Word 1:	Program State	User-defined Safe State				
Word 2:	Program Value	Off				
Word 3:	Fault State	User-defined Safe State				
Word 4:	Fault Value	Off				

1769-0B16, Series B

The following I/O memory mapping lets you configure the 1769-OB16, Series B module.

Output Module's Input Data File

For each module, slot x, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

Þ	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

	Bit P	ositio	n													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

⁽¹⁾ w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

5	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Prog	ram St	tate fo	r Outp	ut Arr	ay Wo	rd 0									
2	Prog	ram Va	alue fo	r Outp	out Arr	ay Wo	rd 0									
3	Fault	Fault State for Output Array Word 0														
4	Fault	Fault Value for Output Array Word 0														

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0B16P

The following I/O memory mapping lets you configure the 1769-OB16P module.

Output Module's Input Data File

For each module, slot *x*, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode⁽¹⁾ configuration, if supported by the controller
- Fault mode⁽¹⁾ configuration, if supported by the controller

2	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r= read.

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

TIP It is only important to use this input word if the controller/adapter supports the Program mode or Fault mode function, and if it is configured to use them.

⁽¹⁾ Not supported by MicroLogix 1500.

Output Data File

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

2	Bit P	ositio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

⁽¹⁾ w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions. The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided to simplify programming. However, some systems, like the 1769-ADN DeviceNet adapter, allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement, as described below.

5	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Not	Not Used (Default = 0) PFE								PFE						
1	Prog	Program State for Output Array Word 0														
2	Prog	ram Va	alue fo	r Outp	ut Arr	ay Wo	ord 0									
3	Fault	Fault State for Output Array Word 0														
4	Fault	Fault Value for Output Array Word 0														

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state condition. Each output is individually configurable for on or off.

Condition	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state condition. Each output is individually configurable for on or off.

Condition	Bit Setting						
Off	0						
On	1						

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting						
Program	0						
Fault	1						

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0B32

The following I/O memory mapping lets you configure the 1769-OB32 module.

Output Module's Input Data File

For each module, slot x, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

	Bit Position															
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
1	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

ord	Bit P	Bit Position														
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
1	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

⁽¹⁾ w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Prog	ram St	tate fo	r Outp	ut Arr	ay Wo	rd 0									
3	Prog	ram St	ate fo	r Outp	ut Arr	ay Wo	rd 1									
4	Prog	ram Va	alue fo	r Outp	ut Arr	ay Wo	ord 0									
5	Prog	ram Va	alue fo	r Outp	out Arr	ay Wo	ord 1									
6	Fault	State	for O	utput A	۲rray ۱	Nord ()									
7	Fault	State	for O	utput A	۲rray ۱	Nord 1										
8	Fault	Value	for O	utput /	۹rray ۱	Word ()									
9	Fault	Value	for O	utput /	۹rray ۱	Word 1	1									
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting				
Program	0				
Fault	1				

Module Default Condition

The modules default condition is all zeros, programming the conditions shown.

Word or Bit Affecte	ed	Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0B32T

The following I/O memory mapping lets you configure the 1769-OB32T module.

Input Data File

For each module, slot x, input data file words 0 and 1 contain the state of the module's output data (output data echo) file words 0 and 1. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

ord	Bit F	Bit Position														
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
1	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, words 0 and 1 in the output data file contain the control program's directed state of the digital output points.

2	Bit Position															
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
1	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

⁽¹⁾ w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe-state conditions.

Manipulate these bits with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

<u> </u>	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
2	Program State for Output Array Word 0															
3	Prog	ram St	tate fo	r Outp	ut Arr	ay Wo	ord 1									
4	Prog	ram Va	alue fo	r Outp	ut Arr	ay Wo	ord 0									
5	Program Value for Output Array Word 1															
6	Fault State for Output Array Word 0															
7	Fault	State	for O	utput /	۲rray ۱	Nord 1	1									

<u> </u>	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
8	Fault	Value	for O	utput i	Array \	Word ()									
9	Fault	Value	for O	utput /	Array \	Word '	1									
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting					
User-defined safe state	0					
Hold last state	1					

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined safe state	0
Hold last state	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting				
Program	0				
Fault	1				

Module Default Condition

The module's default condition is all zeros, programming the conditions shown.

Word or Bit Affect	ted	Condition Applied
Word 0, Bit 0	Program-to-fault Enable	Program value
Word 1	Program state	User-defined safe state
Word 2	Program value	Off
Word 3	Fault state	User-defined safe state
Word 4	Fault value	Off

1769-0F2

The following I/O memory mapping lets you configure the 1769-OF2 module.

Input Data File

For each module, slot x, input data file words 2 and 3 contain the state of the module's output data (output data echo) file words 0 and 1. During normal operation, these input words represent the analog values that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

<u> </u>	Bit Po	sition	1													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	D0	Н0	D1	H1	Not	Used		S1	S0							
1	U0	00	U1	01	Bits	set to										
2	SGN	Outp	ut Da	ta Loo	pback	/Echo	Chanr	nel 0								
3	SGN	Outp	ut Da	ta Loo	pback	/Echo	Chanr	nel 1								

The bit definitions are as follows:

- Dx = Diagnostic bits. When set, they indicate a broken output wire or high load resistance (not used on voltage outputs).
- Hx = Hold Last State bits. When set, they indicate that the channel is in a hold last state condition.
- Sx = General Status bits. When set, these bits indicate an error (over-range, under-range, or diagnostic bit) associated with that channel or a module hardware error.
- Ux = Under-range flag bits.
- Ox = Over-range flag bits.
- SGN = Sign bit in two's complement format.

IMPORTANT	The output module's input data file reflects the analog output data echo							
	of the module, not necessarily the electrical state of the output							
	terminals. It does not reflect shorted or open outputs.							

TIP

It is only important to use these input words if the controller supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot x, words 0 and 1 in the output data file contain the channel 0 and channel 1 output data.

<u> </u>	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Anal	log Output Data Channel 0													
1	SGN	Anal	og Ou	og Output Data Channel 1												

SGN = Sign bit in two's complement format.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. The channel configuration words, words 0 and 1, are described on page 131. Refer to the Compact Analog I/O User Manual, publication number 1769-UM002 for additional details.

5	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	See "	'Channe	el Conf	iguratio	on Wor	ds" on	page	131.								
1	See "	e "Channel Configuration Words" on page 131.														
2	S	Fault	Value -	Chanr	nel 0 ⁽¹⁾											
3	S	Progra	am (Idl	e) Valu	e - Cha	nnel 0										
4	S	Fault	Value -	Chanr	nel 1											
5	S	Progra	am (Idl	e) Valu	e - Cha	nnel 1										

These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method.
 Refer to your controller's user manual for details.

Channel Configuration Words

Words 0 and 1 of the configuration file allow you to change the parameters of each channel independently. For example, word 0 corresponds to channel 0.

- ·							1				1			
Define		se bit			1									Indicate this
	15	14	13	12	11	10	9	8	4 7	3	2	1	0	
Program (Idle) to Fault													0	Program (Idle) Mode Data Applied ⁽¹⁾
Enable													1	Fault Mode Data Applied ⁽¹⁾
Not Used														(Reserved)
Program											0			Hold Last State ⁽¹⁾
(Idle) Mode											1			User-Defined Value ⁽¹⁾
Fault										0				Hold Last State ⁽¹⁾
Mode										1				User-Defined Fault Value ⁽¹⁾
Output					0	0	0	0						-10V dc to +10V dc
Range Select					0	0	0	1	eq			ed		0 to 5V dc
					0	0	1	0	Not Used			Not Used		0 to 10V dc
					0	0	1	1	ž			ž		4 to 20 mA
					0	1	0	0						1 to 5V dc
					0	1	0	1						0 to 20 mA
														Spare ⁽²⁾
Output Data Select		0	0	0										Raw/Proportional Data
Select		0	0	1										Engineering Units
		0	1	0										Scaled-for-PID
		0	1	1										Percent Range
														Spare ⁽²⁾
Enable	1													Enabled
Channel	0													Disabled

⁽¹⁾ These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method. Refer to your controller manual for details.

⁽²⁾ Any attempt to write a nonvalid (spare) bit configuration into any selection field results in a module configuration error.

1769-OF4

The following I/O memory mapping lets you configure the 1769-OF4 module.

Input Data File

For each module, slot x, word 0 in the input data file contains the status bits for the module's analog output channels. Words 1...4 contain the directed values of the analog output channels (output data echo).

5	Bit Po	sition	1													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	U3	03	U2	02	U1	01	U0	00	NU	NU	NU	NU	S3	S2	S1	SO
1	SGN	Outp	tput Data Loopback/Echo Channel 0													
2	SGN	Outp	utput Data Loopback/Echo Channel 1													
3	SGN	Outp	tput Data Loopback/Echo Channel 2													
4	SGN	Outp	ut Dat	a Loop	back/	Echo (Chann	el 3								

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- NU = Not Used. Bit must be set to 0.
- Sx = General Status bit for output channels 0...3.
- Ox = Over range flag bits for output channels 0...3.
- Ux = Under range flag bits for output channels 0...3.

Output Data File

For each module, slot x, words 0...3 in the output data file contain the control program's directed state of the module's analog output channels. Word 4 contains the cancel output-channel-clamp alarm control bits.

P	Bit Po	sitior	1													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	SGN	Analo	og Out	put D	ata Ch	annel	0									
1	SGN	Analo	nalog Output Data Channel 1													
2	SGN	Analo	nalog Output Data Channel 2													
3	SGN	Analo	og Out	put D	ata Ch	nannel	3									
4	NU	NU	NU	NU	NU	NU	NU	NU	CLO 3	CHO 3	CLO 2	CHO 2	CLO 1	CHO 1	CLO 0	CHO 0

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- NU = Not used. Bit must be set to 0.
- CHOx = Cancel High Clamp Alarm Latch for Output x: Allows each output high-clamp-alarm latch to be individually cancelled. Cancel = 1.
- CLOx = Cancel Low Clamp Alarm Latch for Output x: Allows each output low-clamp-alarm-latch to be individually cancelled. Cancel = 1.

Configuration Data File

The manipulation of bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens provided by the programming software simplify configuration.

Some systems, like the 1769-ADN DeviceNet adapter system, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement, shown on the following page.

	Bit P	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	EC	NU							EHI	ELI	LC	ER	FM	PM	NU	PFE
1	NU					Form	nat Ch	0	NU				Туре	/Rang	e Sel	Ch0
2	SGN	Faul	t Value	e Chai	nnel 0	•							•			
3	SGN	Prog	ıram (I	dle) V	alue C	hanne	el O									
4	SGN	Clan	np Hig	h Dat	a Valu	e Cha	nnel 0									
5	SGN	Clan	np Lov	v Data	Value	e Char	nnel 0									
6	SGN	Ram	ıp Rate	e Char	nnel 0											
7	NU															
8	EC	NU							EHI	ELI	LC	ER	FM	PM	NU	PFE
9	NU					Form	nat Ch	1	NU				Туре	/Rang	je Sel	Ch1
10	SGN	Faul	t Value	e Chai	nnel 1											
11	SGN	Prog	ıram (I	dle) V	alue C	hanne	el 1									
12	SGN	Clan	np Hig	h Data	a Valu	e Cha	nnel 1									
13	SGN	Clan	np Lov	v Data	Value	e Char	nnel 1									
14	SGN	Ram	ıp Rate	e Char	nnel 1											
15	NU															
16	EC	NU							EHI	ELI	LC	ER	FM	PM	NU	PFE
17	NU					Form	nat Ch	2	NU				Туре	/Rang	je Sel	Ch2
18	SGN	Faul	t Value	e Chai	nnel 2											
19	SGN	Prog	ıram (I	dle) V	alue C	hanne	el 2									

	Bit P	ositio	n													
Word	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
20	SGN	Clan	np Hig	h Data	a Valu	e Cha	nnel 2									
21	SGN	Clan	np Lov	v Data	Value	e Char	nnel 2									
22	SGN	Ram	p Rate	e Char	nel 2											
23	NU															
24	EC	NU	EHI ELI LC ER FM PM NU PFE											PFE		
25	NU					Form	nat Ch	3	NU				Туре	/Rang	je Sel	Ch3
26	SGN	Faul	t Valu	e Char	nnel 3											
27	SGN	Prog	ram (I	dle) Va	alue C	hanne	el 3									
28	SGN	Clan	np Hig	h Data	a Valu	e Cha	nnel 3									
29	SGN	Clan	np Lov	v Data	Value	e Char	nnel 3									
30	SGN	Ram	p Rate	e Char	nel 3											
31	NU															

The bits are defined as follows:

- SGN = Sign bit in 2's complement format.
- EC = Enable Channel.
- NU = Not used. Bit must be set to 0.
- EHI = Enable Output Channel Interrupt on High Clamp Alarm. (1)
- ELI = Enable Output Channel Interrupt on Low Clamp Alarm. (1)
- LC = Latch Low/High Clamp and Under/Over Range Alarm.
- ER = Enable Ramping. (1)
- FM = Enable Fault Alternate Output State mode. (1)
- PM = Enable Program/Idle Alternate Output State mode. (1)
- PFE = Enable Program/Idle to Fault Alternate Output State mode. (1)
- Format Chx = Output Data Format Select.
- Type/Range Sel Chx = Output Type/Range Select.
- Fault Value Channel *x* = Provides the ability to configure the Fault mode alternate output value. (1)
- Program (Idle) Value Channel x = Provides the ability to configure the Program (Idle) alternate output value. (1)
- Clamp High Data Value Channel *x* = Provides the ability to configure the output high clamp value.
- Clamp Low Data Value Channel *x* = Provides the ability to configure the output low clamp value.
- Ramp Rate Channel *x* = Provides the ability to configure the Ramp Rate. (1)

⁽¹⁾ Interrupts, ramping, and alternate output states are not supported by all controllers. Refer to your controller's user manual to determine if these functions are available.

Define	To Select	Ma	ke th	iese	bit s	ettin	gs										
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Type / Range Select	-10+10V DC													0	0	0	0
Select	05V DC													0	0	0	1
	010V DC													0	0	1	0
	420 mA													0	0	1	1
	15V DC													0	1	0	0
	020 mA													0	1	0	1
Data Format Select	Raw/ Proportional Counts						0	0	0								
	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-0F4CI

The following I/O memory mapping lets you configure the 1769-OF4CI module.

Input Data File

For each module, slot *x*, input data file words 2...5 contain the state of the module's output data (output data echo) file words 0...3. During normal operation, these input words represent the analog values that the outputs are directed to by the control program.

	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0													S3	S2	S1	SO
1		НЗ	U3	03		H2	U2	02		H1	U1	01		Н0	UO	00
2	Channel O Data Value															
3	Chan	nel 1	Data \	/alue												
4	Chan	nel 2	Data \	/alue												
5	Chan	Channel 2 Data Value Channel 3 Data Value														

The bits are defined as follows:

- S = General status (over-range, under-range, or low/high clamp exceeded).
- H = Output held bit.
- U = Under-range (or low-clamp exceeded) alarm.
- O = Over-range (or high-clamp exceeded) alarm.

IMPORTANT The output module's input data file reflects the analog output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

Output Data File

For each module, slot x, words 0...3 in the output data file contain the channel 0...3 output data. Word 4 is used to unlatch any condition that has been latched. Refer to your module's user manual for additional details.

5	Bit Po	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Ana	log C	utpu	t Data	a Cha	nnel	0								
1	SGN	Ana	alog Output Data Channel 1													
2	SGN	Ana	log C	utpu	t Data	a Cha	nnel	2								
3	SGN	Ana	alog Output Data Channel 2 alog Output Data Channel 3													
4									UU3	U03	UU2	U02	UU1	U01	UU0	U00

The bits are defined as follows:

- SGN = Sign bit in two's complement format (must be set to 0).
- UU = Unlatch under-range (or low clamp exceeded) alarm.
- UO = Unlatch over-range (or high clamp exceeded) alarm.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration.

However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. The channel configuration words, the first two words of each eight word group, are described on page 137. Refer to your module's user manual for additional details.

Word	Description	Word	Description
0	Channel 0 Configuration Word 0	16	Channel 2 Configuration Word 0
1	Channel 0 Configuration Word 1	17	Channel 2 Configuration Word 1
2	Channel O Fault Value Word	18	Channel 2 Fault Value Word
3	Channel O Program Idle Mode Word	19	Channel 2 Program Idle Mode Word
4	Channel O Low Clamp	20	Channel 2 Low Clamp
5	Channel O High Clamp	21	Channel 2 High Clamp
6	Channel O Ramp Rate	22	Channel 2 Ramp Rate
7	Channel O Spare	23	Channel 2 Spare
8	Channel 1 Configuration Word 0	24	Channel 3 Configuration Word 0
9	Channel 1 Configuration Word 1	25	Channel 3 Configuration Word 1
10	Channel 1 Fault Value Word	26	Channel 3 Fault Value Word
11	Channel 1 Program Idle Mode Word	27	Channel 3 Program Idle Mode Word
12	Channel 1 Low Clamp	28	Channel 3 Low Clamp
13	Channel 1 High Clamp	29	Channel 3 High Clamp
14	Channel 1 Ramp Rate	30	Channel 3 Ramp Rate
15	Channel 1 Spare	31	Channel 3 Spare

Channel Configuration Words

The first two words of each eight word group in the configuration file allow you to change the parameters of each channel independently. For example, words 8 and 9 correspond to channel 1 while words 16 and 17 correspond to channel 3.

	Bit I	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Е	Rese	erved					SIU	SIO	LA	ER	FM	PM	HI	PFE	
1	Rese	erved					out Da nat Se		Rese	rved				Outp Rang	ut Typ e	e/

The bits are defined as follows:

- E = Channel Enable: (0 = Disabled, 1 = output Enabled, process changes)
- Reserved = Set to zero
- SIU = System interrupt low clamp, under-range alarms: (0 = Disabled, 1 = Enabled)
- SIO = System interrupt high clamp, over-range alarms: (0 = Disabled, 1 = Enabled)
- LA = Latch low/high clamp, under/over-range alarms: (0 = Disabled, 1 = Enabled)
- ER = Enable ramping: (0 = Disabled, 1 = Enabled. Ramp rate limited by fault states.)
- FM = Fault mode: (0 = Hold Last State, 1 = User Defined Value)
- PM = Program mode: (0 = Hold Last State, 1 = User Defined Value)

- HI = Hold for initialization: (0 = Disabled, 1 = Enabled)
- PFE = Program/idle to fault enable: (0 = Disabled, 1 = Enabled)

Define	Indicate this	The	ese b	it se	tting	s											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Program (Idle) to Fault Enable	Program (Idle) Mode Data Applied ⁽¹⁾																0
Eliable	Fault Mode Data Applied ⁽¹⁾																1
Hold for	Disabled															0	
Initializati on	Enabled															1	
Program (Idle) Mode	Hold Last State ⁽¹⁾														0		
Mode	User-Defined Value ⁽¹⁾														1		
Fault Mode	Hold Last State ⁽¹⁾													0			
	User-Defined Fault Value ⁽¹⁾													1			
Enable	Disabled												0				
Ramping	Enabled												1				
System	Disabled											0					
Interrupt High Clamp	Enabled ⁽¹⁾											1					
System	Disabled										0						
Interrupt Low Clamp	Enabled ⁽¹⁾										1						
Enable Channel	Disabled	0															
CHarmer	Enabled	1															

⁽¹⁾ These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method. Refer to your controller manual for details.

Define	Indicate this	The	se k	it s	ettin	gs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Output	020 mA DC														0	0	0
Range Select	420 mA DC														0	0	1
Output Data Select	Raw/ Proportional Counts						0	0	0								
	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-0F4VI

The following I/O memory mapping lets you configure the 1769-OF4VI module.

Input Data File

For each module, slot *x*, input data file words 2...5 contain the state of the module's output data (output data echo) file words 0...3. During normal operation, these input words represent the analog values that the outputs are directed to by the control program.

	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0													S3	S2	S1	SO
1		НЗ	U3	03		H2	U2	02		H1	U1	01		H0	U0	00
2	Chanr	nel 0 E)ata V	alue												
3	Chanr	nel 1 E)ata V	alue												
4	Chanr	nel 2 E)ata V	alue												
5	Chanr	nel 3 E)ata V	alue												

- S = General status (over-range, under-range, or low/high clamp exceeded).
- H = Output held bit.
- U = Under-range (or low-clamp exceeded) alarm.
- O = Over-range (or high-clamp exceeded) alarm.

IMPORTANTThe output module input data file reflects the analog output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

Output Data File

For each module, slot x, words 0...3 in the output data file contain the channel 0...channel 3 output data. Word 4 is used to unlatch any alarm condition that has been latched. Refer to your module user manual for additional details.

	Bit Po	sitio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Ana	alog Output Data Channel 0													
1	SGN	Ana	log O	ng Output Data Channel 0 ng Output Data Channel 1												
2	SGN	Ana	log O	utput	Data	Cha	nnel	2								
3	SGN	Ana	log O	utput	Data	Cha	nnel	3								
4									UU3	U03	UU2	U02	UU1	U01	UU0	U00

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- UU = Unlatch under-range (or low-clamp exceeded) alarm.
- UO = Unlatch over-range (or high-clamp exceeded) alarm.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration.

However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. The channel configuration words, the first two words of each eight word group, are described on page 141. Refer to your module user manual for additional details.

Word	Description	Word	Description
0	Channel O Configuration Word O	16	Channel 2 Configuration Word 0
1	Channel O Configuration Word 1	17	Channel 2 Configuration Word 1
2	Channel O Fault Value Word	18	Channel 2 Fault Value Word
3	Channel O Program Idle Mode Word	19	Channel 2 Program Idle Mode Word
4	Channel O Low Clamp	20	Channel 2 Low Clamp
5	Channel O High Clamp	21	Channel 2 High Clamp
6	Channel O Ramp Rate	22	Channel 2 Ramp Rate
7	Channel O Spare	23	Channel 2 Spare
8	Channel 1 Configuration Word 0	24	Channel 3 Configuration Word 0
9	Channel 1 Configuration Word 1	25	Channel 3 Configuration Word 1
10	Channel 1 Fault Value Word	26	Channel 3 Fault Value Word
11	Channel 1 Program Idle Mode Word	27	Channel 3 Program Idle Mode Word
12	Channel 1 Low Clamp	28	Channel 3 Low Clamp
13	Channel 1 High Clamp	29	Channel 3 High Clamp
14	Channel 1 Ramp Rate	30	Channel 3 Ramp Rate
15	Channel 1 Spare	31	Channel 3 Spare

Channel Configuration Words

2	Bit I	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Е	Rese	erved						SIU	SIO	LA	ER	FM	PM	HI	PFE
1	Rese	erved				Outp Form	out Da nat Se	ta lect	Rese	rved				Outp Rang	ut Typ je	e/

The bits are defined as follows:

- E = Channel Enable: (0 = Disabled, 1 = output Enabled, process changes)
- Reserved = Set to zero
- SIU = System interrupt low clamp, under-range alarms: (0 = Disabled, 1 = Enabled)
- SIO = System interrupt high clamp, over-range alarms: (0 = Disabled, 1 = Enabled)
- LA = Latch low/high clamp, under/over-range alarms: (0 = Disabled, 1 = Enabled)
- ER = Enable ramping: (0 = Disabled, 1 = Enabled. Ramp rate limited by fault states.)
- FM = Fault mode: (0 = Hold Last State, 1 = User Defined Value)
- PM = Program mode: (0 = Hold Last State, 1 = User Defined Value)
- HI = Hold for initialization: (0 = Disabled, 1 = Enabled)
- PFE = Program/idle to fault enable: (0 = Disabled, 1 Enabled)

The first two words of each eight word group in the configuration file allow you to change the parameters of each channel independently. For example, words 8 and 9 correspond to channel 1 while words 16 and 17 correspond to channel 3.

Define	Indicate this	The	se t	oit s	ettin	gs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Program (Idle) to Fault Enable	Program (Idle) Mode Data Applied ⁽¹⁾																0
	Fault Mode Data Applied ⁽¹⁾																1
Hold for	Disabled															0	
Initialization	Enabled															1	
Program (Idle) Mode	Hold Last State ⁽¹⁾														0		
	User-Defined Value ⁽¹⁾														1		
Fault Mode	Hold Last State ⁽¹⁾													0			
	User-Defined Fault Value ⁽¹⁾													1			

Define	Indicate this	The	ese l	oit s	ettin	gs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Enable	Disabled												0				
Ramping	Enabled												1				
System	Disabled											0					
Interrupt High Clamp	Enabled ⁽¹⁾											1					
System	Disabled										0						
Interrupt Low Clamp	Enabled ⁽¹⁾										1						
Enable	Disabled	0															
Channel	Enabled	1															

⁽¹⁾ These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method. Refer to your controller manual for details.

Define	Indicate this	The	ese	bit s	etti	ngs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Output Range Select	-10+10V DC														0	0	0
Select	05V DC														0	0	1
	010V DC														0	1	0
	15V DC														0	1	1
Output Data Select	Raw/Proportional Counts						0	0	0								
	Engineering Units						0	0	1								
	Scaled for PID						0	1	0								
	Percent Range						0	1	1								

1769-OF8C

The following I/O memory mapping lets you configure the 1769-OF8C module.

Input Data File

For each module, slot x, input data file words 3...10 contain the state of the module's output data (output data echo) file words 0...7. During normal operation, these input words represent the analog values that the outputs are directed to by the control program.

	Bit P	ositio	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0								PF	S7	S6	S5	S4	S3	S2	S1	SO
1	D3	НЗ	U3	03	D2	H2	U2	02	D1	H1	U1	01	D0	H0	U0	00
2	D7	H7	U7	07	D6	Н6	U6	06	D5	H5	U5	05	D4	H4	U4	04
3	Chani	nel 0 E)ata V	alue												

	Bit Position															
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
4	Channel 1 Data Value															
5	Channel 2 Data Value															
6	Channel 3 Data Value															
7	Channel 4 Data Value															
8	Channel 5 Data Value															
9	Channel 6 Data Value															
10	Channel 7 Data Value															

The bits are defined as follows:

- PF = Analog power fail.
- S = General status (over-range, under-range, or open-circuit).
- D = Open-circuit diagnostics.
- H = Output held bit.
- U = Under-range (or low-clamp exceeded) alarm.
- O = Over-range (or high-clamp exceeded) alarm.

IMPORTANT The output module's input data file reflects the analog output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

Output Data File

For each module, slot *x*, words 0...7 in the output data file contain the channel 0...7 output data. Word 8 is used to unlatch any condition that has been latched. Refer to the Compact Analog I/O User Manual, publication number <u>1769-UM002</u> for additional details.

- P	Bit Position															
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Analog Output Data Channel 0														
1	SGN	Analog Output Data Channel 1														
2	SGN	Analog Output Data Channel 2														
3	SGN	Analog Output Data Channel 3														
4	SGN	Analog Output Data Channel 4														
5	SGN	Analog Output Data Channel 5														
6	SGN	Analog Output Data Channel 6														
7	SGN	Analog Output Data Channel 7														
8	UU7	U07	UU6	U06	UU5	U05	UU4	U04	UU3	U03	UU2	U02	UU1	U01	UU0	U00

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- UU = Unlatch under-range (or low clamp exceeded) alarm.
- UO = Unlatch over-range (or high clamp exceeded) alarm.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. The channel configuration words, the first two words of each eight word group, are described on page 146. Refer to the Compact Analog I/O User Manual, publication number 1769-UM002 for additional details.

Word	Description	Word	Description
0	Channel O Configuration Word O	24	Channel 3 Configuration Word 0
1	Channel 0 Configuration Word 1	25	Channel 3 Configuration Word 1
2	Channel O Fault Value Word	26	Channel 3 Fault Value Word
3	Channel 0 Program Idle Mode Word	27	Channel 3 Program Idle Mode Word
4	Channel O Low Clamp	28	Channel 3 Low Clamp
5	Channel O High Clamp	29	Channel 3 High Clamp
6	Channel O Ramp Rate	30	Channel 3 Ramp Rate
7	Channel O Spare	31	Channel 3 Spare
8	Channel 1 Configuration Word 0	32	Channel 4 Configuration Word 0
9	Channel 1 Configuration Word 1	33	Channel 4 Configuration Word 1
10	Channel 1 Fault Value Word	34	Channel 4 Fault Value Word
11	Channel 1 Program Idle Mode Word	35	Channel 4 Program Idle Mode Word
12	Channel 1 Low Clamp	36	Channel 4 Low Clamp
13	Channel 1 High Clamp	37	Channel 4 High Clamp
14	Channel 1 Ramp Rate	38	Channel 4 Ramp Rate
15	Channel 1 Spare	39	Channel 4 Spare
16	Channel 2 Configuration Word 0	40	Channel 5 Configuration Word 0
17	Channel 2 Configuration Word 1	41	Channel 5 Configuration Word 1
18	Channel 2 Fault Value Word	42	Channel 5 Fault Value Word
19	Channel 2 Program Idle Mode Word	43	Channel 5 Program Idle Mode Word
20	Channel 2 Low Clamp	44	Channel 5 Low Clamp

Word	Description	Word	Description
21	Channel 2 High Clamp	45	Channel 5 High Clamp
22	Channel 2 Ramp Rate	46	Channel 5 Ramp Rate
23	Channel 2 Spare	47	Channel 5 Spare

Word	Description	Word	Description
48	Channel 6 Configuration Word 0	56	Channel 7 Configuration Word 0
49	Channel 6 Configuration Word 1	57	Channel 7 Configuration Word 1
50	Channel 6 Fault Value Word	58	Channel 7 Fault Value Word
51	Channel 6 Program Idle Mode Word	59	Channel 7 Program Idle Mode Word
52	Channel 6 Low Clamp	60	Channel 7 Low Clamp
53	Channel 6 High Clamp	61	Channel 7 High Clamp
54	Channel 6 Ramp Rate	62	Channel 7 Ramp Rate
55	Channel 6 Spare	63	Channel 7 Spare

<u> </u>	Bit	Posit	ion													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Е	Res	erved						SIU	SIO	LA	ER	FM	PM	Н	PFE
1	Res	erved				Outpu Forma	ut Dat at Sel		Rese	rved				Outp Rang	ut Typi e	e/

The bits are defined as follows:

- E = Channel Enable: (0 = Disabled, 1 = output 0 and hold Enabled, process changes)
- Reserved = Set to zero
- SIU = System interrupt low clamp, under-range alarms: (0 = Disabled, 1 = Enabled)
- SIO = System interrupt high clamp, over-range alarms: (0 = Disabled, 1 = Enabled)
- LA = Latch low/high clamp, under/over-range alarms: (0 = Disabled, 1 = Enabled)
- ER = Enable ramping: (0 = Disabled, 1 = Enabled. Ramp rate limited by fault states.)
- FM = Fault mode: (0 = Hold Last State, 1 = User Defined Value)
- PM = Program mode: (0 = Hold Last State, 1 = User Defined Value)
- HI = Hold for initialization: (0 = Disabled, 1 = Enabled)
- PFE = Program/idle to fault enable: (0 = Disabled, 1 = Enabled)

Channel Configuration Words

The first two words of each eight word group in the configuration file allow you to change the parameters of each channel independently. For example, words 8 and 9 correspond to channel 1 while words 56 and 57 correspond to channel 7.

Define	Indicate this	The	se b	it set	tting	s											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Program (Idle) to Fault Enable	Program (Idle) Mode Data Applied ⁽¹⁾		0	0	0	0	0	0	0	0							0
	Fault Mode Data Applied ⁽¹⁾		0	0	0	0	0	0	0	0							1
Hold for Initialization	Disabled		0	0	0	0	0	0	0	0						0	
	Enabled		0	0	0	0	0	0	0	0						1	
Program (Idle) Mode	Hold Last State ⁽¹⁾		0	0	0	0	0	0	0	0					0		
ivioue	User-Defined Value ⁽¹⁾		0	0	0	0	0	0	0	0					1		
Fault Mode	Hold Last State ⁽¹⁾		0	0	0	0	0	0	0	0				0			
	User-Defined Fault Value ⁽¹⁾		0	0	0	0	0	0	0	0				1			
Enable Ramping	Disabled		0	0	0	0	0	0	0	0			0				
namping	Enabled		0	0	0	0	0	0	0	0			1				
System Interrupt High	Disabled		0	0	0	0	0	0	0	0		0					
Clamp	Enabled		0	0	0	0	0	0	0	0		1					
System Interrupt Low	Disabled		0	0	0	0	0	0	0	0	0						
Clamp	Enabled		0	0	0	0	0	0	0	0	1						
Enable Channel	Disabled	0	0	0	0	0	0	0	0	0							
	Enabled	1	0	0	0	0	0	0	0	0							

⁽¹⁾ These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method. Refer to your controller manual for details.

Define	Indicate this	The	se k	it s	ettin	gs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Output	0 to 20 mA dc	0	0	0	0	0				0	0	0	0	0	0	0	0
Range Select	4 to 20 mA dc	0	0	0	0	0				0	0	0	0	0	0	0	1
Output Data Select	Raw/Proportional Counts	0	0	0	0	0	0	0	0	0	0	0	0	0			
Select	Engineering Units	0	0	0	0	0	0	0	1	0	0	0	0	0			
	Scaled for PID	0	0	0	0	0	0	1	0	0	0	0	0	0			
	Percent Range	0	0	0	0	0	0	1	1	0	0	0	0	0			

Controller Tags for RSLogix 5000, Version 15 or Later

Use the following controller tags with RSLogix 5000, version 15 or later.

Channel 0 and 1 Configuration Data

Channel 0 and 1 configuration data is shown below. The same information applies to all channels.

Lo	cal:1:C	AB:1769_OF	8C:C:0
	Local:1:C.Ch0ProgToFaultEn	BOOL	Decimal
	Local:1:C.Ch0HoldForInit	BOOL	Decimal
	Local:1:C.Ch0ProgMode	BOOL	Decimal
	Local:1:C.Ch0FaultMode	BOOL	Decimal
	Local:1:C.Ch0RampEn	BOOL	Decimal
	Local:1:C.Ch0AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch00verRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch0UnderRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch0En	BOOL	Decimal
+	Local:1:C.Ch0Range	SINT	Decimal
+	Local:1:C.Ch0DataFormat	SINT	Decimal
+	Local:1:C.Ch0FaultValue	INT	Decimal
+	Local:1:C.Ch0ProgValue	INT	Decimal
+	Local:1:C.Ch0LClampValue	INT	Decimal
+	Local:1:C.Ch0HClampValue	INT	Decimal
+	Local:1:C.Ch0RampRate	INT	Decimal
	Local:1:C.Ch1ProgToFaultEn	BOOL	Decimal
	Local:1:C.Ch1HoldForInit	BOOL	Decimal
	Local:1:C.Ch1ProgMode	BOOL	Decimal
	Local:1:C.Ch1FaultMode	BOOL	Decimal
	Local:1:C.Ch1RampEn	BOOL	Decimal
	Local:1:C.Ch1AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch1OverRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch1UnderRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch1En	BOOL	Decimal
+	Local:1:C.Ch1Range	SINT	Decimal
+	Local:1:C.Ch1DataFormat	SINT	Decimal
+	Local:1:C.Ch1FaultValue	INT	Decimal
+	Local:1:C.Ch1ProgValue	INT	Decimal
+	Local:1:C.Ch1LClampValue	INT	Decimal
+	Local:1:C.Ch1HClampValue	INT	Decimal
+	Local:1:C.Ch1RampRate	INT	Decimal

Tag Name	To Select	Make	Thes	e Bit	Setti	ngs ⁽¹⁾				
		15 8	7	6	5	4	3	2	1	0
Ch#ProgToFaultEn	Enable									1
	Disable									0
Ch#HoldForInit	Enable									1
	Disable									0
Ch#ProgMode	Enable									1
	Disable									0
Ch#FaultMode	Enable									1
	Disable									0
Ch#RampEn	Enable									1
	Disable									0
Ch#AlarmLatchEn	Enable									1
	Disable									0
Ch#OverRangeInterruptEn	Enable									1
	Disable									0
Ch#UnderRangeInterruptEn	Enable									1
	Disable									0
Ch#En	Enable									1
	Disable									0
Ch#Range	020 mA dc									0
	420 mA dc									1
Ch#DataFormat	Raw/proportional counts								0	0
	Engineering units								0	1
	Scaled for PID								1	0
	Percent range								1	1

⁽¹⁾ All bit positions left blank in table must be set to 0.

Input Data

- I	Loc	al:1:l	AB:1769_0F	8C:I:0
-	+	Local:1:I.Fault	DINT	Binary
-	+	Local:1:I.CombinedStatus	SINT	Binary
		Local:1:I.Ch0Status	BOOL	Decimal
		Local:1:I.Ch1Status	BOOL	Decimal
		Local:1:I.Ch2Status	BOOL	Decimal
		Local:1:I.Ch3Status	BOOL	Decimal
		Local:1:I.Ch4Status	BOOL	Decimal
		Local:1:I.Ch5Status	BOOL	Decimal
		Local:1:I.Ch6Status	BOOL	Decimal
		Local:1:I.Ch7Status	BOOL	Decimal
+	+	Local:1:I.ModuleStatus	SINT	Binary
		Local:1:I.PowerFail	BOOL	Decimal
+	+	Local:1:I.Ch0_1Status	SINT	Binary
		Local:1:I.Ch00verRange	BOOL	Decimal
		Local:1:I.Ch0UnderRange	BOOL	Decimal
		Local:1:I.Ch0InHold	BOOL	Decimal
		Local:1:I.Ch00penWire	BOOL	Decimal
		Local:1:I.Ch10verRange	BOOL	Decimal
		Local:1:I.Ch1UnderRange	BOOL	Decimal
		Local:1:I.Ch1InHold	BOOL	Decimal
		Local:1:I.Ch10penWire	BOOL	Decimal
+	+	Local:1:I.Ch2_3Status	SINT	Binary
		Local:1:I.Ch2OverRange	BOOL	Decimal
		Local:1:I.Ch2UnderRange	BOOL	Decimal
		Local:1:I.Ch2InHold	BOOL	Decimal
		Local:1:I.Ch2OpenWire	BOOL	Decimal
		Local:1:I.Ch3OverRange	BOOL	Decimal
		Local:1:I.Ch3UnderRange	BOOL	Decimal

Loc	eal:1:l	AB:1769_0F	8C:I:0
	Local:1:I.Ch3InHold	BOOL	Decimal
	Local:1:I.Ch3OpenWire	BOOL	Decimal
+	Local:1:I.Ch4_5Status	SINT	Binary
	Local:1:I.Ch4OverRange	BOOL	Decimal
	Local:1:I.Ch4UnderRange	BOOL	Decimal
	Local:1:I.Ch4InHold	BOOL	Decimal
	Local:1:I.Ch4OpenWire	BOOL	Decimal
	Local:1:I.Ch5OverRange	BOOL	Decimal
	Local:1:I.Ch5UnderRange	BOOL	Decimal
	Local:1:I.Ch5InHold	BOOL	Decimal
	Local:1:I.Ch5OpenWire	BOOL	Decimal
+	Local:1:I.Ch6_7Status	SINT	Binary
	Local:1:I.Ch6OverRange	BOOL	Decimal
	Local:1:I.Ch6UnderRange	BOOL	Decimal
	Local:1:I.Ch6InHold	BOOL	Decimal
	Local:1:I.Ch6OpenWire	BOOL	Decimal
	Local:1:I.Ch7OverRange	BOOL	Decimal
	Local:1:I.Ch7UnderRange	BOOL	Decimal
	Local:1:I.Ch7InHold	BOOL	Decimal
	Local:1:I.Ch7OpenWire	BOOL	Decimal
+	Local:1:I.Ch0ReadBack	INT	Decimal
+	Local:1:I.Ch1ReadBack	INT	Decimal
+	Local:1:I.Ch2ReadBack	INT	Decimal
ŀ	Local:1:I.Ch3ReadBack	INT	Decimal
	Local:1:I.Ch4ReadBack	INT	Decimal
+	Local:1:I.Ch5ReadBack	INT	Decimal
ŀ	Local:1:I.Ch6ReadBack	INT	Decimal
+	Local:1:I.Ch7ReadBack	INT	Decimal

Tag	Bit Indica	tes This ⁽¹	1)					
Name	7	6	5	4	3	2	1	0
Combined Status	Ch7 Status	Ch6 Status	Ch5 Status	Ch4 Status	Ch3 Status	Ch2 Status	Ch1 Status	Ch0 Status
Module Status								Power Fail
ChO_1 Status	Ch1 OpenWire	Ch1 InHold	Ch1 Under Range	Ch1 Over Range	Ch0 OpenWire	Ch0 InHold	Ch0 Under Range	Ch0 Over Range

Tag	Bit Indica	tes This ⁽¹)					
Name	7	6	5	4	3	2	1	0
Ch2_3 Status	Ch3 OpenWire	Ch3 InHold	Ch3 Under Range	Ch3 Over Range	Ch2 OpenWire	Ch2 InHold	Ch2 Under Range	Ch2 Over Range
Ch4_5 Status	Ch5 OpenWire	Ch5 InHold	Ch5 Under Range	Ch5 Over Range	Ch4 OpenWire	Ch4 InHold	Ch4 Under Range	Ch4 Over Range
Ch6_7 Status	Ch7 OpenWire	Ch7 InHold	Ch7 Under Range	Ch7 Over Range	Ch6 OpenWire	Ch6 InHold	Ch6 Under Range	Ch6 Over Range

⁽¹⁾ Bit positions left blank in table are always set to 0.

Output Data

Lo	cal:1:0	AB:1769_0F	8C:0:0
+	Local:1:0.Ch0Data	INT	Decimal
+	Local:1:0.Ch1Data	INT	Decimal
+	Local:1:0.Ch2Data	INT	Decimal
+	Local:1:0.Ch3Data	INT	Decimal
+	Local:1:0.Ch4Data	INT	Decimal
+	Local:1:0.Ch5Data	INT	Decimal
+	Local:1:0.Ch6Data	INT	Decimal
+	Local:1:0.Ch7Data	INT	Decimal
+	Local:1:0.AlarmUnlatch	INT	Binary
	Local:1:0.Ch00verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch0UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch10verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch1UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch2OverRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch2UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch30verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch3UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch40verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch4UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch50verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch5UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch60verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch6UnderRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch70verRangeUnlatch	BOOL	Decimal
	Local:1:0.Ch7UnderRangeUnlatch	BOOL	Decimal

1769-OF8V

The following I/O memory mapping lets you configure the 1769-OF8V module.

Input Data File

For each module, slot x, input data file words 3...10 contain the state of the module's output data (output data echo) file words 0...7. During normal operation, these input words represent the analog values that the outputs are directed to by the control program.

5	Bit P	ositic	n													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0								PF	S7	S6	S5	S4	S3	S2	S1	SO
1	D3	НЗ	U3	03	D2	H2	U2	02	D1	H1	U1	01	D0	H0	U0	00
2	D7	H7	U7	07	D6	Н6	U6	06	D5	H5	U5	05	D4	H4	U4	04
3	Chan	nel 0 l	Data V	alue												
4	Channel 1 Data Value															
5	Channel 2 Data Value															
6	Chan	nel 3 [Data V	alue												
7	Chan	nel 4 [Data V	alue												
8	Channel 5 Data Value															
9	Channel 6 Data Value															
10	Chan	nel 7 [Data V	alue												

The bits are defined as follows:

- PF = Analog power fail.
- S = General status (over-range, under-range, or open-circuit).
- D = Open-circuit diagnostics.
- H = Output held bit.
- U = Under-range (or low-clamp exceeded) alarm.
- O = Over-range (or high-clamp exceeded) alarm.

IMPORTANTThe output module's input data file reflects the analog output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

Output Data File

For each module, slot x, words 0...7 in the output data file contain the channel 0 through channel 7 output data. Word 8 is used to unlatch any alarm condition that has been latched. Refer to the Compact Analog I/O User Manual, publication number 1769-UM002 for additional details.

<u> </u>	Bit Pos	sition														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SGN	Anal	og Ou	tput D	ata C	hanne	10									
1	SGN	Anal	alog Output Data Channel 1													
2	SGN	Anal	alog Output Data Channel 2													
3	SGN	Anal	alog Output Data Channel 3													
4	SGN	Anal	og Ou	tput D	ata C	hanne	14									
5	SGN	Anal	og Ou	tput D	ata C	hanne	15									
6	SGN	Anal	og Ou	tput D	ata C	hanne	16									
7	SGN	Anal	Analog Output Data Channel 7													
8	UU7	U0 7	UU 6	U0 6	UU 5	U0 5	UU 4	U0 4	UU 3	U0 3	UU 2	U0 2	UU 1	U0 1	UU 0	U0 0

The bits are defined as follows:

- SGN = Sign bit in two's complement format.
- UU = Unlatch under-range (or low-clamp exceeded) alarm.
- UO = Unlatch over-range (or high-clamp exceeded) alarm.

Configuration Data File

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided by the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program, using communication rungs. In that case, it is necessary to understand the bit arrangement. The channel configuration words, the first two words of each eight word group, are described on page 155. Refer to the Compact Analog I/O User Manual, publication number 1769-UM002 for additional details.

Word	Description	Word	Description
0	Channel O Configuration Word O	24	Channel 3 Configuration Word 0
1	Channel 0 Configuration Word 1	25	Channel 3 Configuration Word 1
2	Channel O Fault Value Word	26	Channel 3 Fault Value Word
3	Channel O Program Idle Mode Word	27	Channel 3 Program Idle Mode Word

Word	Description	Word	Description
4	Channel O Low Clamp	28	Channel 3 Low Clamp
5	Channel O High Clamp	29	Channel 3 High Clamp
6	Channel O Ramp Rate	30	Channel 3 Ramp Rate
7	Channel 0 Spare	31	Channel 3 Spare
8	Channel 1 Configuration Word 0	32	Channel 4 Configuration Word 0
9	Channel 1 Configuration Word 1	33	Channel 4 Configuration Word 1
10	Channel 1 Fault Value Word	34	Channel 4 Fault Value Word
11	Channel 1 Program Idle Mode Word	35	Channel 4 Program Idle Mode Word
12	Channel 1 Low Clamp	36	Channel 4 Low Clamp
13	Channel 1 High Clamp	37	Channel 4 High Clamp
14	Channel 1 Ramp Rate	38	Channel 4 Ramp Rate
15	Channel 1 Spare	39	Channel 4 Spare
16	Channel 2 Configuration Word 0	40	Channel 5 Configuration Word 0
17	Channel 2 Configuration Word 1	41	Channel 5 Configuration Word 1
18	Channel 2 Fault Value Word	42	Channel 5 Fault Value Word
19	Channel 2 Program Idle Mode Word	43	Channel 5 Program Idle Mode Word
20	Channel 2 Low Clamp	44	Channel 5 Low Clamp
21	Channel 2 High Clamp	45	Channel 5 High Clamp
22	Channel 2 Ramp Rate	46	Channel 5 Ramp Rate
23	Channel 2 Spare	47	Channel 5 Spare

Word	Description	Word	Description
48	Channel 6 Configuration Word 0	56	Channel 7 Configuration Word 0
49	Channel 6 Configuration Word 1	57	Channel 7 Configuration Word 1
50	Channel 6 Fault Value Word	58	Channel 7 Fault Value Word
51	Channel 6 Program Idle Mode Word	59	Channel 7 Program Idle Mode Word
52	Channel 6 Low Clamp	60	Channel 7 Low Clamp
53	Channel 6 High Clamp	61	Channel 7 High Clamp
54	Channel 6 Ramp Rate	62	Channel 7 Ramp Rate
55	Channel 6 Spare	63	Channel 7 Spare

5	Bit P	ositior	1													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	E	Reser	ved						SI U	SI O	LA	ER	F M	P M	HI	PF E
1	Reser	ved				Outpu Forma	ıt Dat at Sel	a ect	Rese	erved				Outp Rang	out Ty _l ge	pe/

The bits are defined as follows:

- E = Channel Enable: (0 = Disabled, 1 = output 0 and hold Enabled, process changes)
- Reserved = Set to zero
- SIU = System interrupt low clamp, under-range alarms: (0 = Disabled, 1 = Enabled)
- SIO = System interrupt high clamp, over-range alarms: (0 = Disabled, 1 = Enabled)
- LA = Latch low/high clamp, under/over-range alarms: (0 = Disabled, 1 = Enabled)
- ER = Enable ramping: (0 = Disabled, 1 = Enabled. Ramp rate limited by fault states.)
- FM = Fault mode: (0 = Hold Last State, 1 = User Defined Value)
- PM = Program mode: (0 = Hold Last State, 1 = User Defined Value)
- HI = Hold for initialization: (0 = Disabled, 1 = Enabled)
- PFE = Program/idle to fault enable: (0 = Disabled, 1 Enabled)

Channel Configuration Words

The first two words of each eight word group in the configuration file allow you to change the parameters of each channel independently. For example, words 8 and 9 correspond to channel 1 while words 56 and 57 correspond to channel 7.

Define	Indicate this	The	ese l	it s	ettir	ıgs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Program (Idle) to Fault Enable	Program (Idle) Mode Data Applied ⁽¹⁾		0	0	0	0	0	0	0	0							0
	Fault Mode Data Applied ⁽¹⁾		0	0	0	0	0	0	0	0							1
Hold for	Disabled		0	0	0	0	0	0	0	0						0	
Initialization	Enabled		0	0	0	0	0	0	0	0						1	
Program	Hold Last State ⁽¹⁾		0	0	0	0	0	0	0	0					0		
(Idle) Mode	User-Defined Value ⁽¹⁾		0	0	0	0	0	0	0	0					1		
Fault Mode	Hold Last State ⁽¹⁾		0	0	0	0	0	0	0	0				0			
	User-Defined Fault Value ⁽¹⁾		0	0	0	0	0	0	0	0				1			
Enable	Disabled		0	0	0	0	0	0	0	0			0				
Ramping	Enabled		0	0	0	0	0	0	0	0			1				
System	Disabled		0	0	0	0	0	0	0	0		0					
Interrupt High Clamp	Enabled		0	0	0	0	0	0	0	0		1					

Define	Indicate this	The	ese l	oit s	ettin	ıgs											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
System	Disabled		0	0	0	0	0	0	0	0	0						
Interrupt Low Clamp	Enabled		0	0	0	0	0	0	0	0	1						
Enable	Disabled	0	0	0	0	0	0	0	0	0							
Channel	Enabled	1	0	0	0	0	0	0	0	0							

⁽¹⁾ These functions are not supported by all controllers, such as MicroLogix 1500, using any configuration method. Refer to your controller manual for details.

Define	Indicate this	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 +10V dc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V dc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Output	-10 to +10V dc	0	0	0	0	0				0	0	0	0	0	0	0	0
Range Select	0 to 5V dc	0	0	0	0	0				0	0	0	0	0	0	0	1
	0 to 10V dc	0	0	0	0	0				0	0	0	0	0	0	1	0
	1 to 5V dc	0	0	0	0	0				0	0	0	0	0	0	1	1
Output Data Select	Raw/Proportional Counts	0	0	0	0	0	0	0	0	0	0	0	0	0			
Select	Engineering Units	0	0	0	0	0	0	0	1	0	0	0	0	0			
	Scaled for PID	0	0	0	0	0	0	1	0	0	0	0	0	0			
	Percent Range	0	0	0	0	0	0	1	1	0	0	0	0	0			

Controller Tags for RSLogix 5000, Version 15 or Later

Use the following controller tags with RSLogix 5000, version 15 or later.

Channel 0 and 1 Configuration Data

Channel 0 and 1 configuration data is shown below. The same information applies to all channels.

Loc	cal:1:C	AB:1769_OF	-8V:C:0
	Local:1:C.Ch0ProgToFaultEn	BOOL	Decimal
	Local:1:C.Ch0HoldForInit	BOOL	Decimal
	Local:1:C.Ch0ProgMode	BOOL	Decimal
	Local:1:C.Ch0FaultMode	BOOL	Decimal
	Local:1:C.Ch0RampEn	BOOL	Decimal
	Local:1:C.Ch0AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch00verRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch0UnderRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch0En	BOOL	Decimal
+	Local:1:C.Ch0Range	SINT	Decimal
+	Local:1:C.Ch0DataFormat	SINT	Decimal
+	Local:1:C.Ch0FaultValue	INT	Decimal
+	Local:1:C.Ch0ProgValue	INT	Decimal
+	Local:1:C.Ch0LClampValue	INT	Decimal
+	Local:1:C.Ch0HClampValue	INT	Decimal
+	Local:1:C.Ch0RampRate	INT	Decimal
	Local:1:C.Ch1ProgToFaultEn	BOOL	Decimal
	Local:1:C.Ch1HoldForInit	BOOL	Decimal
	Local:1:C.Ch1ProgMode	BOOL	Decimal
	Local:1:C.Ch1FaultMode	BOOL	Decimal
	Local:1:C.Ch1RampEn	BOOL	Decimal
	Local:1:C.Ch1AlarmLatchEn	BOOL	Decimal
	Local:1:C.Ch10verRangeInterruptEn	BOOL	Decimal
	Local:1:C.Ch1UnderRangeInterruptEn	BOOL	Decimal

-	Loc	al:1:C	AB:1769_0F8V:C:0	1
		Local:1:C.Ch1En	BOOL	Decimal
	+	Local:1:C.Ch1Range	SINT	Decimal
	+	Local:1:C.Ch1DataFormat	SINT	Decimal
	+	Local:1:C.Ch1FaultValue	INT	Decimal
	+	Local:1:C.Ch1ProgValue	INT	Decimal
	+	Local:1:C.Ch1LClampValue	INT	Decimal
	+	Local:1:C.Ch1HClampValue	INT	Decimal
	+	Local:1:C.Ch1RampRate	INT	Decimal

Tag Name	To Select	Make	The	ese Bi	t Sett	ings ⁽¹	1)			
		15-8	7	6	5	4	3	2	1	0
Ch#ProgToFaultEn	Enable									1
	Disable									0
Ch#HoldForInit	Enable									1
	Disable									0
Ch#ProgMode	Enable									1
	Disable									0
Ch#FaultMode	Enable									1
	Disable									0
Ch#RampEn	Enable									1
	Disable									0
Ch#AlarmLatchEn	Enable									1
	Disable									0
Ch#OverRangeInterruptEn	Enable									1
	Disable									0
Ch#UnderRangeInterruptEn	Enable									1
	Disable									0
Ch#En	Enable									1
	Disable									0
Ch#Range	-10+10V dc								0	0
	05V dc								0	1
	010V dc								1	0
	15V dc								1	1
Ch#DataFormat	Raw/proportional counts								0	0
	Engineering units								0	1
	Scaled for PID								1	0
	Percent range								1	1

⁽¹⁾ All bit positions left blank in table must be set to 0.

Input Data

Loc	al:1:l	AB:1769_0F8V:I:0				
+	Local:1:I.Fault	DINT	Binary			
+	Local:1:I.CombinedStatus	SINT	Binary			
	Local:1:I.Ch0Status	BOOL	Decimal			
	Local:1:I.Ch1Status	BOOL	Decimal			
	Local:1:I.Ch2Status	BOOL	Decimal			
	Local:1:I.Ch3Status	BOOL	Decimal			
	Local:1:I.Ch4Status	BOOL	Decimal			
	Local:1:I.Ch5Status	BOOL	Decimal			
	Local:1:I.Ch6Status	BOOL	Decimal			
	Local:1:I.Ch7Status	BOOL	Decimal			
+	Local:1:I.ModuleStatus	SINT	Binary			
	Local:1:I.PowerFail	BOOL	Decimal			
+	Local:1:I.Ch0_1Status	SINT	Binary			
	Local:1:I.Ch0OverRange	BOOL	Decimal			
	Local:1:I.Ch0UnderRange	BOOL	Decimal			
	Local:1:I.Ch0InHold	BOOL	Decimal			
	Local:1:I.Ch1OverRange	BOOL	Decimal			
	Local:1:I.Ch1UnderRange	BOOL	Decimal			
	Local:1:I.Ch1InHold	BOOL	Decimal			
ŀ	Local:1:I.Ch2_3Status	SINT	Binary			
	Local:1:I.Ch2OverRange	BOOL	Decimal			
	Local:1:I.Ch2UnderRange	BOOL	Decimal			
	Local:1:I.Ch2InHold	BOOL	Decimal			
	Local:1:I.Ch3OverRange	BOOL	Decimal			
	Local:1:I.Ch3UnderRange	BOOL	Decimal			
	Local:1:I.Ch3InHold	BOOL	Decimal			

Loc	cal:1:l	AB:1769_OF	8V:1:0	
+	Local:1:I.Ch4_5Status	SINT	Binary	
	Local:1:I.Ch40verRange	BOOL	Decimal	
	Local:1:I.Ch4UnderRange	BOOL	Decimal	
	Local:1:I.Ch4InHold	BOOL	Decimal	
	Local:1:I.Ch5OverRange	BOOL	Decimal	
	Local:1:I.Ch5UnderRange	BOOL	Decimal	
	Local:1:I.Ch5InHold	BOOL	Decimal	
+	Local:1:I.Ch6_7Status	SINT	Binary	
	Local:1:I.Ch6OverRange	BOOL	Decimal	
	Local:1:I.Ch6UnderRange	BOOL	Decimal	
	Local:1:I.Ch6InHold	BOOL	Decimal	
	Local:1:I.Ch70verRange	BOOL	Decimal	
	Local:1:I.Ch7UnderRange	BOOL	Decimal	
	Local:1:I.Ch7InHold	BOOL	Decimal	
+	Local:1:I.Ch0ReadBack	INT	Decimal	
+	Local:1:I.Ch1ReadBack	INT	Decimal	
+	Local:1:I.Ch2ReadBack	INT	Decimal	
+	Local:1:I.Ch3ReadBack	INT	Decimal	
+	Local:1:I.Ch4ReadBack	INT	Decimal	
+	Local:1:I.Ch5ReadBack	INT	Decimal	
+	Local:1:I.Ch6ReadBack	INT	Decimal	
+	Local:1:I.Ch7ReadBack	INT	Decimal	

Tag	Bit Indic	ates This ⁽¹						
Name	7	6	5	4	3	2	1	0
Combined Status	Ch7 Status	Ch6 Status	Ch5 Status	Ch4 Status	Ch3 Status	Ch2 Status	Ch1 Status	Ch0 Status
Module Status								Power Fail
ChO_1 Status		Ch1 InHold	Ch1 Under Range	Ch1 Over Range		Ch0 InHold	Ch0 Under Range	Ch0 Over Range
Ch2_3 Status		Ch3 InHold	Ch3 Under Range	Ch3 Over Range		Ch2 InHold	Ch2 Under Range	Ch2 Over Range
Ch4_5 Status		Ch5 InHold	Ch5 Under Range	Ch5 Over Range		Ch4 InHold	Ch4 Under Range	Ch4 Over Range
Ch6_7 Status		Ch7 InHold	Ch7 Under Range	Ch7 Over Range		Ch6 InHold	Ch6 Under Range	Ch6 Over Range

⁽¹⁾ Bit positions left blank in table are always set to 0.

Output Data

Loc	cal:1:0	AB:1769_0F8V:0:0				
+	Local:1:0.Ch0Data	INT	Decimal			
+	Local:1:0.Ch1Data	INT	Decimal			
+	Local:1:0.Ch2Data	INT	Decimal			
+	Local:1:0.Ch3Data	INT	Decimal			
+	Local:1:0.Ch4Data	INT	Decimal			
+	Local:1:0.Ch5Data	INT	Decimal			
+	Local:1:0.Ch6Data	INT	Decimal			
+	Local:1:0.Ch7Data	INT	Decimal			
+	Local:1:0.AlarmUnlatch	INT	Binary			
	Local:1:0.Ch00verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch0UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch10verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch1UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch2OverRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch2UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch30verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch3UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch40verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch4UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch50verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch5UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch60verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch6UnderRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch70verRangeUnlatch	BOOL	Decimal			
	Local:1:0.Ch7UnderRangeUnlatch	BOOL	Decimal			

1769-OG16

The following I/O memory mapping lets you configure the 1769-OG16 module.

Output Module's Input Data File

For each module, slot x, word 0 in the input data file contains the state of the module's output data file (output data echo). During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program mode configuration, if supported by the controller
- Fault mode configuration, if supported by the controller

The module implements inverted logic on the TTL outputs. An Output Data File bit set to 1 directs a logic low output voltage on the corresponding output point. An Output Data File bit cleared to 0 directs a logic high output voltage on the corresponding output point.

5	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program mode or Fault mode function, and if it is configured to use them.

Output Data File

For each module, slot x, word 0 in the output data file contains the state of the module's output points. The module implements inverted logic on the TTL outputs. An Output Data File bit set to 1 results in a logic low output voltage on the corresponding output point. An Output Data File bit cleared to 0 results in a logic high output voltage on the corresponding output point.

_r	Bit P	Bit Position														
Mo	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

(1) w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical dialogs are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

	Bit I	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Program State for Output Array Word 0															
2	Prog	ram Va	alue fo	or Outp	out Arr	ay Wo	ord 0									
3	Fault	Fault State for Output Array Word 0														
4	Fault	t Value	for O	utput	Array '	Word (0									

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word⁽¹⁾

The program value word, word 2, is used to program the user-defined safe state value (0 = Off, 1 = On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

⁽¹⁾ TTL outputs are inverted (On = 1 = logic low voltage = 0...0.4V dc; Off = 0 = logic high voltage = 4.5...5.5V dc). Use a NOT instruction in the ladder program to convert to traditional True = High logic.

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word⁽¹⁾

The fault value word, word 4, is used to program the fault state value (0 = Off, 1 = On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting in a change to the Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition⁽¹⁾

The modules default condition is all zeros.

Word or Bit Affect	ted	Condition Applied
Word 0, Bit 0	Program-to-fault Enable	Program Value
Word 1	Program State	User-defined Safe State
Word 2	Program Value	Off
Word 3	Fault State	User-defined Safe State
Word 4	Fault Value	Off

⁽¹⁾ TTL outputs are inverted (On = 1 = logic low voltage = 0...0.4V dc; Off = 0 = logic high voltage = 4.5...5.5V dc). Use a NOT instruction in the ladder program to convert to traditional True = High logic.

1769-0V16

The following I/O memory mapping lets you configure the 1769-OV16 module.

Output Module's Input Data File

For each module, slot *x*, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

5	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program Mode or Fault Mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

5	Bit P	ositio	n													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

(1) w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, likek the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

E	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PFE														
1	Prog	Program State for Output Array Word 0														
2	Prog	Program Value for Output Array Word 0														
3	Fault	Fault State for Output Array Word 0														
4	Fault	Fault Value for Output Array Word 0														

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

1769-0V32T

The following I/O memory mapping lets you configure the 1769-OV32T module.

Output Module's Input Data File

For each module, slot x, input data file words 0 and 1 contain the state of the module's output data (output data echo) file words 0 and 1. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

ord	Bit F	Bit Position														
N	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
1	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

⁽¹⁾ r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program Mode or Fault Mode function, and if it is configured to use them.

Output Data File

For each module, slot *x*, words 0 and 1 in the output data file contain the control program's directed state of the discrete output points.

ord	Bit Position															
N	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
1	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

⁽¹⁾ w=write

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

- E	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Progi	ram St	tate fo	r Outp	ut Arr	ay Wo	rd 0									
3	Progi	Program State for Output Array Word 1														
4	Progi	ram Va	alue fo	r Outp	ut Arr	ay Wo	rd 0									
5	Progi	ram Va	alue fo	r Outp	ut Arr	ay Wo	rd 1									
6	Fault	Fault State for Output Array Word 0														
7	Fault State for Output Array Word 1															
8	Fault	Value	for O	utput /	۹rray ۱	Word ()									
9	Fault	Value	for O	utput /	۹rray ۱	Word '	1									
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting						
Program	0						
Fault	1						

Module Default Condition

The modules default condition is all zeros, programming the conditions shown.

Word or Bit Affecte	d	Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0W8

The following I/O memory mapping lets you configure the 1769-OW8 module.

Output Module's Input Data File

For each module, slot *x*, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

For the 1769-OW8, bits 8 to 15 are not used.

<u> </u>	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r

(1) r = read

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program Mode or Fault Mode function, and if it is configured to use them

Output Data File

For each module, slot x, word 0 in the output data file contains the control program's directed state of the discrete output points. For the 1769-OW8, bits 8 to 15 are not used.

5	Bit F	Positi	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	w ⁽¹⁾	W	W	W	W	W	W	W

(1) w=write

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

5	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Progi	ram St	tate fo	r Outp	ut Arr	ay Wo	rd 0									
2	Progi	ram Va	alue fo	r Outp	out Arr	ay Wo	rd 0									
3	Fault State for Output Array Word 0															
4	Fault Value for Output Array Word 0															

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting					
Program	0					
Fault	1					

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affecte	ed	Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0W8I

The following I/O memory mapping lets you configure the 1769-OW8I module.

Output Module's Input Data File

For each module, slot x, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

For the 1769-OW8I, bits 8 to 15 are not used.

5																
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	r ⁽¹⁾	r	r	r	r	r	r	r

(1) r = read

IMPORTANT

The output module's input data file reflects the output data echo of the module, not the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program Mode or Fault Mode function, and if it is configured to use them

Output Data File

For each module, slot x, word 0 in the output data file contains the control program's directed state of the discrete output points. For the 1769-OW8I, bits 8 to 15 are not used.

P.	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	w ⁽¹⁾	W	W	W	W	W	W	W

(1) w = write

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangment.

	Bit Position															
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Program State for Output Array Word 0															
2	Prog	ram Va	alue fo	r Outp	ut Arr	ay Wo	ord 0									
3	Fault State for Output Array Word 0															
4	Fault	: Value	e for O	utput .	Array '	Word	0									

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting a change to Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affect	ed	Condition Applied
Word 0, Bit 0:	Program-to-Fault Enable	Program Value
Word 1:	Program State	User-defined Safe State
Word 2:	Program Value	Off
Word 3:	Fault State	User-defined Safe State
Word 4:	Fault Value	Off

1769-0W16

The following I/O memory mapping lets you configure the 1769-OW16 module.

Output Module's Input Data File

For each module, slot x, input data file word 0 contains the state of the module's output data (output data echo) file word 0. During normal operation, these input bits represent the logic state that the outputs are directed to by the control program. They are also dependent upon these configurations:

- Program Mode configuration, if supported by the controller
- Fault Mode configuration, if supported by the controller

p	Bit F	Positio	on													
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	r ⁽¹⁾	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

(1) r = read.

IMPORTANT

The output module's input data file reflects the output data echo of the module, not necessarily the electrical state of the output terminals. It does not reflect shorted or open outputs.

It is important to use this input word if the controller adapter supports the Program Mode or Fault Mode function, and if it is configured to use them

Output Data File

Data output bits are turned on or off using the bit positions in word 0.

- 1 = output on
- 0 = output off

EXAMPLE

To turn on bit position 12, type 1 in word 0, bit 12.

For each module, slot *x*, word 0 in the output data file contains the control program's directed state of the discrete output points.

	Bit P	ositio	n													
W	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	w ⁽¹⁾	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

(1) w = write.

Configuration File

The read/writable configuration data file allows the setup of the hold last state and user-defined safe state conditions.

The manipulation of the bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens are provided via the programmer to simplify configuration. However, some systems, like the 1769-ADN DeviceNet adapter, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement.

5	Bit F	Positio	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFE
1	Program State for Output Array Word 0															
2	Progi	ram Va	alue fo	r Outp	ut Arr	ay Wo	rd 0									
3	Fault State for Output Array Word 0															
4	Fault	Value	for O	utput ,	۹rray ۱	Nord ()									

Program State Word

Word 1, the program state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Program.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Program Value Word

The program value word, word 2, is used to program the user-defined safe state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Fault State Word

Word 3, the fault state word, selects the hold last state or user-defined safe state condition for each individual output on a system transition from Run to Fault.

Condition	Bit Setting
User-defined Safe State	0
Hold Last State	1

Fault Value Word

The fault value word, word 4, is used to program the fault state value (0=Off, 1=On). Each output is individually configurable for on or off.

Value	Bit Setting
Off	0
On	1

Program to Fault Enable Bit (PFE)

Word 0, bit 0, allows the selection of which data value, the program or fault value, to apply to the output if a system in Program mode undergoes a system fault, resulting in a change to the Fault mode.

Value Applied	Bit Setting
Program	0
Fault	1

Module Default Condition

The modules default condition is all zeros, programming the conditions shown below.

Word or Bit Affected		Condition Applied				
Word 0, Bit 0:	Program-to-Fault Enable	Program Value				
Word 1:	Program State	User-defined Safe State				
Word 2:	Program Value	Off				
Word 3:	Fault State	User-defined Safe State				
Word 4:	Fault Value	Off				

1769-ARM

The module has an input data file of 1 word, no output data file (0 words), and no configuration data file (0 words).

Input Data File

For each address reserve module, slot x, word 0 in the input data file contains all bits set to 0.

E	Bit Position															
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1769-ASCII

The 1769-ASCII module supports an input assembly that is accessible through the Assembly Object (Class 4), Instance 101. The input assembly is up to 108 words. The module supports an output assembly that is accessible through the Assembly Object (Class 4), Instance 100. The output assembly is up to 108 words.

Alternate Mode (One Channel at a Time) Input File

Maximum size is shown below. Refer to the Compact I/O 1769-ASCII Module User Manual, publication <u>1769-UM012</u>, to use smaller input files.

	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Tx ID 0 Acknowledged								Rx Transaction ID Ch0							
1	15	14	13	12	11	10	TG 0	TS 0	ND 0	HE 0	NR 0	RF 0	TF 0	PA 0	RO 0	TO 0
2	Tx IC) 1 Ac	knowl	edged					Rx T	ransac	ction II	Ch1				
3	15	14	13	12	11	10	TG 1	TS 1	ND 1	HE 1	NR 1	RF 1	TF 1	PA 1	RO 1	T0 1
4	Reserved											CNI				
5	Reserved											CN O				
6	Firm	ware l	Revisi	on, Ma	ajor				Firm	ware	Revisi	on, Mi	nor			
7	Leng	ıth (Νι	ımber	of Byt	es)											
8	Char	acter	1						Character 0							
9	Char	acter	3						Character 2							
	Character								Character							
106	Character 197								Character 196							
107	Char	acter	199						Char	acter	198					

The bits are defined as follows:

- Tx = Transmit.
- Rx = Receive.
- TS = Transmit sent. Indicates the ASCII module has sent the data indicated by the Tx Transaction ID and can accept more transmit data.
- ND = New data. Only used for Handshake mode.
- HE = Handshake error. Only used for Handshake mode.

- NR = Non-delimited record. An input record is received and sent to the Compact bus interface that was not triggered by a delimiter character. This occurs when either the buffer is filled to its maximum receive size or a Message Timeout has occurred.
- RF = Data in the receive FIFO. The FIFO is not empty. The input FIFO has not sent all of its data to the Compact bus interface.
- TF = Data in transmit FIFO. The FIFO is not empty. The output FIFO has not sent all of its data to the ASCII device.
- PA = Parity error. A parity error has occurred with the received data string.
 This usually indicates a mismatch in the serial port set-up of the ASCII device and the Compact module. It could also indicate that noise has occurred on the line and degraded the signal. This bit is set when the receive FIFO contains a message in which a parity error occurred in one of the incoming bytes. This bit is reset when the receive FIFO is emptied or when a new message is received with no parity error.
- RO = Receive buffer overflow. Some input data has been lost.
- TG = Transmit greater than Max Error. Transmit length in the output file is greater than the maximum transmit character length in the configuration file.
- TO = Transmit buffer overflow. Some output data has been lost.
- CNI = Channel number of the input data. This bit is set by the ASCII
 module to tell the user program from which port the data was received.
- CNO = Channel number of the output data most recently received. This
 bit is set by the ASCII module to tell the user program that it has received
 the data to transmit out the specified port.

Alternate Mode (One Channel at a Time) Output File

Maximum size is shown below. Refer to the Compact I/O 1769-ASCII Module User Manual, publication <u>1769-UM012</u>, to use smaller output files.

5	Bit I	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Rese	Reserved Tx Transaction ID Ch0 Reserved Rx Transaction ID Request Ch0														
1	Rese															
2	Rese	erved							Tx Tı	ransac	tion II	Ch1				
3	Rese	erved							Rx T	ransac	ction II	D Req	uest C	h1		
4	Rese	erved							•							CNI

<u> </u>	Bit	Positi	ion													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
5	Rese	erved														CNO
6	Rese	erved														
7	Lenç	ength (Number of Bytes)														
8	Chai	racter	1						Char	racter	0					
9	Chai	racter	3						Char	racter	2					
	Chai	racter							Char	racter						
106	Chai	racter	197						Char	racter	196					
107	Chai	racter	199						Char	racter	198					

The bits are defined as follows:

- Tx = Transmit.
- Rx = Receive.
- CNI = Channel number of requested input data. This bit is set by the PLC controller or other user program to tell the ASCII module which data to produce.
- CNO = Channel number of the output data being sent. This bit is set by the PLC controller or other user program to tell the ASCII module which port's data is being sent to the ASCII module.
- Reserved bits should be set to 0.

Simultaneous Mode (Two Channels) Input File

Maximum size is shown below. Refer to the Compact I/O 1769-ASCII Module User Manual, publication 1769-UM012, to use smaller output files.

	Bit I	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan	nel 0	Data														
0	Tx IE) Ackn	owled	lged					Rx Tr	ransac	ction II)				
1	Rese	erved					TG	TS	ND	HE	NR	RF	TF	PA	RO	TO
2	Firm	ware l	Revisi													
3	Leng	jth (Νι	ımber	of Byt	es)											
4	Char	acter	1						Char	acter	0					
5	Char	acter	3						Char	acter	2					
	Char	acter							Char	acter						
x ⁽¹⁾	Last	Chara	icter						Char	acter	• • •					

	Bit F	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan	nel 1	Data														
<i>x</i> +1	Tx IC) Ackn	owled	dged					Rx Tı	ransac	tion II)				
<i>x</i> +2	Rese															
<i>x</i> +3	Firm	Reserved TG TS ND HE NR RF TF PA RO TO Firmware Revision, Major Firmware Revision, Minor														
<i>x</i> +4	Leng	ıth (Νι	ımber	of Byt	es)											
<i>x</i> +5	Char	acter	1						Char	acter	0					
<i>x</i> +6	Char	acter	3						Char	acter	2					
	Char	acter							Char	acter						
y ⁽²⁾	Last	Chara	cter						Char	acter						

⁽¹⁾ X is calculated based on the size of Channel 0 data as specified in the input file. Both channels cannot contain 200 characters as the total configuration file size can be only 108 words.

- Tx = Transmit.
- Rx = Receive.
- TG = Transmit greater than Max Error. Transmit length in the output file is greater than the maximum transmit character length in the configuration file.
- TS = Transmit sent. Indicates the ASCII module has sent the data indicated by the Tx Transaction ID and can accept more transmit data.
- ND = New data. Only used for Handshake mode.
- HE = Handshake error. Only used for Handshake mode.
- NR = Non-delimited record. An input record is received and sent to the Compact bus interface that was not triggered by a delimiter character. This occurs when either the buffer is filled to its maximum receive size or a Message Timeout has occurred.
- RF = Data in the receive FIFO. The FIFO is not empty. The input FIFO has not sent all of its data to the Compact bus interface.
- TF = Data in transmit FIFO. The FIFO is not empty. The output FIFO has not sent all of its data to the ASCII device.

⁽²⁾ Y is equal to the connection size minus 1, with a maximum value of 107 for a buffer size of 108.

- PA = Parity error. A parity error has occurred with the received data string. This usually indicates a mismatch in the serial port set-up of the ASCII device and the Compact module. It could also indicate that noise has occurred on the line and degraded the signal. This bit is set when the receive FIFO contains a message in which a parity error occurred in one of the incoming bytes. This bit is reset when the receive FIFO is emptied or when a new message is received with no parity error.
- RO = Receive buffer overflow. Some input data has been lost.
- TO = Transmit buffer overflow. Some output data has been lost.

Simultaneous Mode (Two Channels) Output File

Maximum size is shown below. Refer to the Compact I/O 1769-ASCII Module User Manual, publication <u>1769-UM012</u>, to use smaller output files.

	Bit	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan	nel 0	Data												•		
0	Rese	erved							TxT	ransa	ction I	D				
1	Rese	erved							Rx	Transa	ction l	D Req	uest			
2	Rese	erved														
3	Lenç	gth (Nu	ımber	of Byt	tes)											
4	Chai	racter	1						Cha	racter	0					
5	Chai	racter	3						Cha	racter	2					
	Chai	racter							Cha	racter						
x ⁽¹⁾	Last	Chara	cter						Cha	racter						
Chan	nel 1	Data														
<i>x</i> +1	Rese	erved							Tx 7	ransa	ction I	D				
<i>x</i> +2	Rese	erved							Rx	Fransa	ction l	D Req	uest			
<i>x</i> +3	Rese	erved														
<i>x</i> +4	Lenç	gth (Nu	ımber	of Byt	tes)											
<i>x</i> +5	Chai	racter	1						Cha	racter	0					
<i>x</i> +6	Chai	racter	3						Cha	racter	2					
	Chai	racter							Cha	racter						
y ⁽²⁾	Last	Chara	cter						Cha	racter						

⁽¹⁾ X is calculated based on the size of Channel 0 data as specified in the configuration file. Both channels cannot contain 200 characters as the total configuration file size can be only 108 words.

⁽²⁾ Y is equal to the connection size minus 1, with a maximum value of 107 for a buffer size of 108.

The bits are defined as follows:

- Tx = Transmit
- Rx = Receive

Configuration File

The 1769-ASCII module supports a configuration assembly that is accessible through the Assembly Object (Class 4), Instance 102. The configuration assembly is 31 words. The addresses assume a 16-bit data structure where all 16-bit values are $INT^{(1)}$. The least significant word occupies the smaller byte addresses.

Word	Description	Values	Valid Data Values
0	Data Buffer Mode	01	0 = alternate mode 1 = simultaneous mode
Cha	nnel O		
1	Serial Character Framing	08	0 = 7N2, 1 = 7E1, 2 = 701, 3 = 8N1, 4 = 8N2, 5 = 8E1, 6 = 801, 7 = 7E2, 8 = 702
2	Serial Port Speed	07	0 = 9600, 1 = 1200, 2 = 2400, 3 = 4800, 4 = 19200, 5 = 38400, 6 = 57.6k, 7 = 115.2k (half-duplex only)
Seri	al Port Receive Data		
3	Max Number of Receive Characters	0200	In Simultaneous mode, the total number of channel 0 characters plus channel 1 characters cannot exceed 200.
4	Receive Record Start Mode	02	0 = ignore, 1 = exclude, 2 = include start delimiter
5	Receive Start Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
6	Receive Record End Mode	02	0 = ignore, 1 = exclude, 2 = include end delimiter
7	Receive End Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
Mod	lule Production Data	•	
8	Pad Character ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
9	Receive Swap Mode	02	0 = disabled, 1 = 16-bit, 2 = 32-bit
10	Master Handshake Mode	01	0 = master/slave handshake, 1 = produce immediate
11	Message Time Out	065535	0 = none, 1 to 65535 ms
Seri	al Port Transmit Data	•	
12	Max Number of Transmit Characters	0200	In Simultaneous mode, the total number of channel 0 characters plus channel 1 characters cannot exceed 200.

⁽¹⁾ INT = Integer range of -32768 to +32767 decimal, 0000 to FFFF hexadecimal.

Word	Description	Values	Valid Data Values
13	Transmit Record End Mode	02	0 = ignore, 1 = exclude, 2 = include end delimiter
14	Transmit End Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
15	Transmit Swap Mode	02	0 = disabled, 1 = 16-bit, 2 = 32-bit
Cha	nnel 1	1	
16	Serial Character Framing	08	0 = 7N2, 1 = 7E1, 2 = 701, 3 = 8N1, 4 = 8N2, 5 = 8E1, 6 = 801, 7 = 7E2, 8 = 702
17	Serial Port Speed	07	0 = 9600, 1 = 1200, 2 = 2400, 3 = 4800, 4 = 19200, 5 = 38400, 6 = 57.6k, 7 = 115.2k (half-duplex only)
Seri	al Port Receive Data	•	
18	Max Number of Receive Characters	0200	In Simultaneous mode, the total number of channel 0 characters plus channel 1 characters cannot exceed 200.
19	Receive Record Start Mode	02	0 = ignore, 1 = exclude, 2 = include start delimiter
20	Receive Start Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
21	Receive Record End Mode	02	0 = ignore, 1 = exclude, 2 = include end delimiter
22	Receive End Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
Mod	lule Production Data	1	
23	Pad Character ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
24	Receive Swap Mode	02	0 = disabled, 1 = 16-bit, 2 = 32-bit
25	Master Handshake Mode	01	0 = master/slave handshake, 1 = produce immediate
26	Message Time Out	065535	0 = none, 1 to 65535 ms
Seri	al Port Transmit Data		
27	Max Number of Transmit Characters	0200	In Simultaneous mode, the total number of channel 0 characters plus channel 1 characters cannot exceed 200.
28	Transmit Record End Mode	02	0 = ignore, 1 = exclude, 2 = include end delimiter
29	Transmit End Delimiter ⁽¹⁾	0127/255	00x7f (0127) for 7-bit data 00xff (0255) for 8-bit data
30	Transmit Swap Mode	02	0 = disabled, 1 = 16-bit, 2 = 32-bit

⁽¹⁾ To enter values from +128 to +255, use this conversion formula: Desired Decimal Value - 256 = Entered Decimal Value. For example, for an ASCII character value of 128, 128 - 256 = -128.

1769-BOOLEAN

The following I/O memory mapping lets you configure the 1769-BOOLEAN module.

Input Data File

For each module, slot x, word 0 in the input data file contains the state of the module's real input points. Word 1 in the input data file contains the state of the module's output data (output data echo). During normal operation, this word represents the values that the outputs are directed to by the control program (in Direct Control mode) or by the module (in BOOLEAN Control mode).

ord	Bit F	Positio	on													
N	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0									IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
1													03	02	01	00

The bits are defined as follows:

- Shaded bit positions must be set to 0.
- INx = State of module's real inputs 0...7.
- Ox = Data echo of directed states of module outputs 0...3; 1 = output on, 0 = output off.

Output Data File

For each module, slot x, word 0 in the output data file contains the control program's directed state of the module's output points when operated in Direct Control mode. Direct Control mode is active when an output's disable BOOLEAN (DB_x) bit is set in the configuration data file. Word 1 contains the control program's directed states of the virtual inputs, which can be used in controlling the module's output points via BOOLEAN expressions.

2	Bit	Posit	tion													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0													OUT3	OUT2	OUT1	OUT0
1									V7	V6	V5	V4	V3	V2	V1	V0

The bits are defined as follows:

- Shaded bit positions must be set to 0.
- OUTx = Output state in Direct Control mode; 1 = output on, 0 = output off.
- Vx = Virtual inputs 0...7.

Configuration Data File

The manipulation of bits from this file is normally done with programming software, such as RSLogix 500, RSLogix 5000, or RSNetWorx for DeviceNet, during initial configuration of the system. In that case, graphical screens provided by the programming software simplify configuration.

Some systems, like the 1769-ADN DeviceNet adapter system, also allow the bits to be altered as part of the control program using communication rungs. In that case, it is necessary to understand the bit arrangement. Words 0 and 1 of the configuration data file set the input control parameters for the module. Words 2...7 set the alternate output state operation of the module. Each output point's operating parameters are controlled by a group of eight words.

	Bit I	Positi	on														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0														Inpu ⁻	t Filter		
1	IT_ I7	EI_ 17	IT_ 16	EI_ 16	IT_ I5	EI_ I5	IT_ I4	EI_ I4	IT_ I3	EI_ I3	IT_ I2	EI_ I2	IT_ I1	EI_ I1	IT_ 10	EI_ 10	
2																PFE	
3																	
4													PM 3	PM 2	PM 1	PM 0	
5													PV 3	PV 2	PV 1	PV 0	
6													FM 3	FM 2	FM 1	FM 0	
7													FV 3	FV 2	FV 1	FV 0	
8											IT_C	10			DB _0		
9											Оре	rand_ <i>F</i>	4_0	•		•	
10											Ope	and_E	3_0				
11											Оре	and_(C_0				
12											Oper _2_0	rator)			Oper _1_(ator)	
13							Outp	ut Del	ay 0								
14							Outp	ut Dur	ration	0							
15																	
16											IT_C	11		EI_ 01		DB _1	
17											Оре	rand_ <i>F</i>	4_1				
18											Оре	and_E					
19											Оре	and_(C_1				
20											Oper _2_	ator 1			Oper _1_1	ator	

	Bit I	Positi	on													
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
21							Outp	ut De	lay 1							
22							Outp	ut Du	ration	1						
23																
24											IT_C)2		EI_ 02		DB _1
25											Ope	rand_ <i>A</i>	1_2		•	
26											Ope	rand_E	3_2			
27							Operand_C_2 Operator Operator									
28						Operand_C_2								rator 2		
29							Outp	ut De	lay 2							
30							Outp	ut Du	ration	2						
31																
32											IT_C)3		EI_ 03		DB _3
33											Ope	rand_ <i>F</i>	1_3			
34											Оре	rand_E	3_3			
35											Оре	rand_0	2_3			
36											Ope _2_	rator 3			Oper _1_:	rator 3
37							Outp	ut De	lay 3							
38							Outp	ut Du	ration	3						
39																

The bits are defined as follows:

- Shaded bit positions must be set to 0.
- Input filter: Real input point filter selection. See page 190.
- EI_Ix: Enable input interrupt; 1 = interrupt enabled, 0 = interrupt disabled.
- IT_Ix: Input interrupt type; 1 = generate interrupt on real input point transition from on to off, 0 = generate interrupt on real input point transition from off to on.
- PFE: Program to fault enable; 1 = fault value applied, 0 = program value applied.
- PMx: Program mode; 1 = hold last state, 0 = user-defined safe state.
- PVx: Program value; 1 = output on, 0 = output off.
- FMx: Fault mode; 1 = hold last state, 0 = user-defined safe state.
- FVx: Fault value; 1 = output on, 0 = output off.
- DB_x: Output Control; 1 = output in Direct Control mode, 0 = output in BOOLEAN Control mode.

- EI_Ox: Enable output interrupt; 1 = interrupt enabled, 0 = interrupt disabled.
- IT_Ox: Output interrupt type. See page 191.
- Operand_A_x: BOOLEAN operand A. See page 191.
- Operand_B_x: BOOLEAN operand B. See page 191.
- Operand_C_x: BOOLEAN operand C. See page 191.
- Operator_1_x: BOOLEAN operator 1. See page 193.
- Operator_2_x: BOOLEAN operator 2. See page 193.
- Output delay x: Delay time from BOOLEAN expression transition from false to true until output directed to transition from off to on. See page 194.
- Output duration x: Pre-determined output pulse duration time. Time from output directed to transition from off to on until output directed to transition from on to off. See page 195.

			Bit	Posi	ition	1)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Input	8 ms														0	0	0
	Filter	0 s														0	0	1
		100 µs														0	1	0
		200 μs														0	1	1
		500 μs														1	0	0
		1 ms														1	0	1
		2 ms														1	1	0
		4 ms														1	1	1

⁽¹⁾ Darker shaded bit positions must be set to 0.

			Rit	Posi	tion ⁽	1)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
8, 16, 24, 32	Output	Direct Control																1
	(DB_x)	BOOLEAN Control																0
	Enable	Enable														1		
	Output Interrupt	Disable														0		
	Output Interrupt Type	BOOLEAN Expression FALSE to TRUE											0	0				
		Output Directed OFF to ON											0	1				
		BOOLEAN Expression TRUE to FALSE											1	0				
		Output Directed ON to OFF											1	1				

⁽¹⁾ Darker shaded bit positions must be set to 0.

			Bit	Posi	tion	1)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
9, 10, 11	Operand	None											0	0	0	0	0	0
	_A_0 Operand _B_0	Real Input 0											0	0	0	0	0	1
	Operand _C_0	Inverted Real Input 0											0	0	0	0	1	0
		Real Input 1											0	0	0	0	1	1
17, 18, 19	Operand _A_1 Operand	Inverted Real Input 1											0	0	0	1	0	0
	_B_1 Operand _C_1	Real Input 2											0	0	0	1	0	1
		Inverted Real Input 2											0	0	0	1	1	0
		Real Input 3											0	0	0	1	1	1

된			Bit	Posi	tion	1)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(
25, 26, 27	Operand _A_2 Operand	Inverted Real Input 3											0	0	1	0	0	
	_B_2 Operand _C_2	Real Input 4											0	0	1	0	0	
		Inverted Real Input 4											0	0	1	0	1	
		Real Input 5											0	0	1	0	1	Ī
33, 34, 35	Operand _A_3 Operand	Inverted Real Input 5											0	0	1	1	0	Ī
	_B_3 Operand _C_3	Real Input 6											0	0	1	1	0	Ī
		Inverted Real Input 6											0	0	1	1	1	-
		Real Input 7											0	0	1	1	1	Ì
		Inverted Real Input 7											0	1	0	0	0	
		Virtual Input 0											0	1	0	0	0	1
		Inverted Virtual Input 0											0	1	0	0	1	
		Virtual Input 1											0	1	0	0	1	Ī
		Inverted Virtual Input 1											0	1	0	1	0	
		Virtual Input 2											0	1	0	1	0	1
		Inverted Virtual Input 2											0	1	0	1	1	
		Virtual Input 3											0	1	0	1	1	1
		Inverted Virtual Input 3											0	1	1	0	0	
		Virtual Input 4											0	1	1	0	0	Ī
		Inverted Virtual Input 4											0	1	1	0	1	
		Virtual Input 5											0	1	1	0	1	

		Bit	Posi	tion	(1)												
Word		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Inverted Virtual Input 5											0	1	1	1	0	0
	Virtual Input 6											0	1	1	1	0	1
	Inverted Virtual Input 6											0	1	1	1	1	0
	Virtual Input 7											0	1	1	1	1	1
	Inverted Virtual Input 7											1	0	0	0	0	0

⁽¹⁾ Darker shaded bit positions must be set to 0. Entering a binary value greater than 100000 (greater than 32 decimal) results in a configuration error.

			Bit	Posi	tion ⁽	1)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
12, 20,	Operator_	None															0	0
28, 36	1_0 Operator_	OR															0	1
	1_1 Operator_	AND															1	0
	1_2 Operator_ 1_3	XOR															1	1
	Operator_	None											0	0				
	2_0 Operator_	OR											0	1				
	2_1 Operator_	AND											1	0				
	2_2 Operator_ 2_3	XOR											1	1				

⁽¹⁾ Darker shaded bit positions must be set to 0.

-			Bit	Posi	tion	(1)												—
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13, 21,	Output	0 ms							0	0	0	0	0	0	0	0	0	0
29, 37	Delay 0	1 ms							0	0	0	0	0	0	0	0	0	1
	Output	2 ms							0	0	0	0	0	0	0	0	1	0
	Delay 1	3 ms							0	0	0	0	0	0	0	0	1	1
	Output	4 ms							0	0	0	0	0	0	0	1	0	0
	Delay 2	5 ms							0	0	0	0	0	0	0	1	0	1
	Output	6 ms							0	0	0	0	0	0	0	1	1	0
	Delay 3	7 ms							0	0	0	0	0	0	0	1	1	1
		993 ms							1	1	1	1	1	0	0	0	0	1
		994 ms							1	1	1	1	1	0	0	0	1	0
		995 ms							1	1	1	1	1	0	0	0	1	1
		996 ms							1	1	1	1	1	0	0	1	0	0
		997 ms							1	1	1	1	1	0	0	1	0	1
		998 ms							1	1	1	1	1	0	0	1	1	0
		999 ms							1	1	1	1	1	0	0	1	1	1
		1000 ms							1	1	1	1	1	0	1	0	0	0

⁽¹⁾ Shaded bit positions must be set to 0. Entering a binary value greater than 1111101000 (greater than 1000 decimal) results in a configuration error.

-			Bit	Posi	ition	(2)												
Word			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
14, 22,	Output Duration	None ⁽¹⁾							0	0	0	0	0	0	0	0	0	0
30, 38	0	1 ms							0	0	0	0	0	0	0	0	0	1
	Output Duration	2 ms							0	0	0	0	0	0	0	0	1	0
	1	3 ms							0	0	0	0	0	0	0	0	1	1
	Output Duration	4 ms							0	0	0	0	0	0	0	1	0	0
	2	5 ms							0	0	0	0	0	0	0	1	0	1
	Output Duration	6 ms							0	0	0	0	0	0	0	1	1	0
	3	7 ms							0	0	0	0	0	0	0	1	1	1
		993 ms							1	1	1	1	1	0	0	0	0	1
		994 ms							1	1	1	1	1	0	0	0	1	0
		995 ms							1	1	1	1	1	0	0	0	1	1
		996 ms							1	1	1	1	1	0	0	1	0	0
		997 ms							1	1	1	1	1	0	0	1	0	1
		998 ms							1	1	1	1	1	0	0	1	1	0
		999 ms							1	1	1	1	1	0	0	1	1	1
		1000 ms							1	1	1	1	1	0	1	0	0	0

⁽¹⁾ No pre-determined output pulse duration. Output directed off when BOOLEAN expression goes to FALSE

1769-HSC

Refer to the Compact High-speed Counter Module User Manual, publication <u>1769-UM006</u> for information on configuring the 1769-HSC module.

⁽²⁾ Shaded bit positions must be set to 0. Entering a binary value greater than 1111101000 (greater than 1000 decimal) results in a configuration error.

Chapter 3 I/O Memory Mappin	Cha	pter 3	1/0	Memory	/ Mappind
-----------------------------	-----	--------	-----	--------	-----------

Notes:

Module Replacement Parts

Module Catalog Number	Spare/Replacement Parts
1769-IA8I	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IA16	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IF4, Series B or later	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL2 Series B (2 per kit) Door: 1769-RD (2 per kit)
1769-IF4I	Terminal block: 1769-RTBN18 (1 per kit)
1769-IF4X0F2	Terminal block: 1769-RTBN18 (1 per kit)Door: 1769-RD (2 per kit)
1769-IF4FX0F2F	Terminal block: 1769-RTBN18 (1 per kit)Door: 1769-RD (2 per kit)
1769-IF8	Terminal block: 1769-RTBN18 (1 per kit)
1769-IF16C	Terminal block: 1769-RTBN18 (1 per kit)Door: 1769-RD (2 per kit)
1769-IF16V	Terminal block: 1769-RTBN18 (1 per kit)Door: 1769-RD (2 per kit)
1769-IG16	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IM12	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IQ16	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IQ16F	 Terminal Block: 1769-RTBN18 (1 per kit) Door Label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IQ32	Terminal block: 1769-RTBN18 (1 per kit)
1769-IQ32T	Connector kit: 1746-N3 (1 connector, 40 terminals per kit)
1769-IQ6XOW4, Series B	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-IR6	 Terminal block: 1769-RTBN18 (1 per kit) Door: 1769-RD (2 per kit)
1769-IT6	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL2 series B (2 per kit) Door: 1769-RD (2 per kit)

Module Catalog Number	Spare/Replacement Parts
1769-0A8, Series B	 Terminal block: 1769-RTBN10 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-OA16	Terminal block: 1769-RTBN18 (1 per kit)
1769-0B8, Series A	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0B16, Series B	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0B16P	 Terminal block: 1769-RTB18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0B32	Terminal block: 1769-RTBN18 (1 per kit)
1769-0B32T	Connector kit: 1746-N3 (1 connector, 40 terminals per kit)
1769-0F2, Series B or later	 Terminal block: 1769-RTBN10 (1 per kit) Door label: 1769-RL2 Series B (2 per kit) Door: 1769-RD (2 per kit)
1769-0F4	 Terminal block: 1769-RTBN10 (1 per kit) Door: 1769-RD (2 per kit)
1769-0F4CI	 Terminal block: 1769-RTBN18 (1 per kit) Door: 1769-RD (2 per kit)
1769-0F4VI	Terminal block: 1769-RTBN18Door: 1769-RD (2 per kit)
1769-0F8C	 Terminal block: 1769-RTBN10 (1 per kit) A-B part number A22112-319-01 Door: 1769-RD (2 per kit)
1769-0F8V	 Terminal block: 1769-RTBN10 (1 per kit)
1769-0G16	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0V16	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0V32T	Connector kit: 1746-N3 (1 connector, 40 terminals per kit)
1769-0W8, Series B	 Terminal block: 1769-RTBN10 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0W8I, Series B	 Terminal block: 1769-RTBN18 (1 per kit) Door label: 1769-RL1 (2 per kit) Door: 1769-RD (2 per kit)
1769-0W16	Terminal block:1769-RTBN18 (1 per kit)
1769-ARM	Not applicable
1769-ASCII	Not applicable
1769-B00LEAN	Terminal block: 1769-RTBN18 (1 per kit)Door: 1769-RD (2 per kit)
1769-HSC	Terminal block: 1769-RTBN18 (1 per kit) Door: 1769-RD (2 per kit)

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440.646.3434
	Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone en.html, or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication <u>RA-DU002</u>, available at http://www.rockwellautomation.com/literature/.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat: 634752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Allen-Bradley

Compact I/O Modules

Installation Instructions