

PowerMonitor 500 Unit

Catalog Numbers 1420-V1, 1420-V2, 1420-V1A, 1420-V1P, 1420-V2A, 1420-V2P, 1420-V1-ENT, 1420-V1-485, 1420-V2-ENT, 1420-V2-485, 1420-V1A-ENT, 1420-V1A-485, 1420-V2A-ENT, 1420-V2A-485, 1420-V1P-ENT, 1420-V1P-485, 1420-V2P-ENT, 1420-V2P-485

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

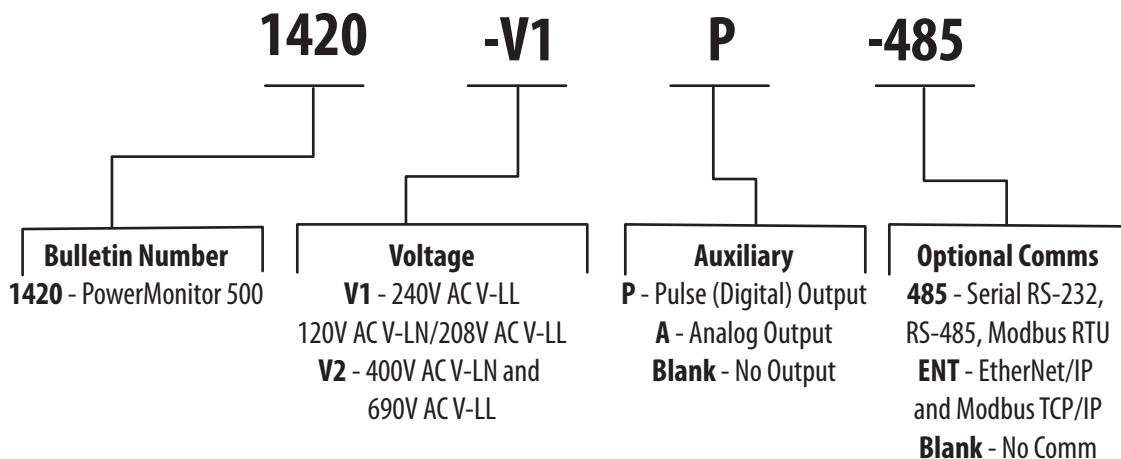
ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

Preface	5
Summary of Changes	5
Catalog Number Explanation	6
Access Product Release Notes	6
Additional Resources	6
 Chapter 1		
PowerMonitor 500 Unit Overview		
About the PowerMonitor 500 Unit	7
PowerMonitor 500 Features and Functions	8
Front Panel Features	9
Display Features	11
Selecting Data to Display	12
 Chapter 2		
Installation and Wiring		
Installation	15
Wiring Diagrams	17
 Chapter 3		
Unit Configuration		
Configure with the Display	25
Configuration Flowchart	28
Configure the IP Address	33
Digital Filtering Operation	35
Analog Output Configuration Examples	38
Alarm Configuration Example	39
Digital Output Configuration Examples	39
 Chapter 4		
Communication		
EtherNet/IP Communication	43
Modbus Communication	54
 Appendix A		
PowerMonitor 500 Unit Data Tables		
Summary of Data Tables	57
Geometric Representation of Power and Power Factor	58
Data Tables	59
List of Connectable Variables	74
 Appendix B		
Technical Specifications	77

PowerMonitor 500 EtherNet/IP Device Profile	Appendix C
	General 85
	Object Model and Interface 85
	Identity Object - CLASS CODE 0x0001 85
	Assembly Object - CLASS CODE 0x0004 90
	Technical Notes 93
Unit Configuration - Base Firmware Revision 11 and Earlier	Appendix D
	Configure with the Display 95
	Configuration Flowchart 98
	Index 103

This manual contains detailed information on these topics for the PowerMonitor 500 unit:

- Mounting and wiring of the unit
- Wiring to native and optional communication port
- Set-up and use of the display module
- Information on metering functionality and measurements
- Use of the display module for configuration, monitoring, and commands
- Discussion of communication options, functionality, configuration, and operation
- Alarm configuration and operation
- PowerMonitor™ 500 data tables


This manual is intended for qualified personnel. You need a basic understanding of electric power and energy theory and terminology, and alternating-current (AC) metering principles.

Summary of Changes

This manual contains new and updated information as indicated in this table.

Topic	Page
Updated Pulse configuration definitions.	30
Added information on how to configure the IP address.	33
Added digital output configuration examples.	39
Added information about the EDS Add-On Profile.	46
Updated the Modbus address for DMD - Synchronization.	67
Updated the Modbus address in the Commands: Write-only table.	71
Updated the Pulse Weight and Pulse Duration specifications in Table 39.	78
Updated the kWh consumption specification in Table 43.	81

Catalog Number Explanation

Access Product Release Notes

Download the latest PowerMonitor 500 unit Ethernet firmware, associated files (such as AOP, EDS, and DTM), and access product release notes from the Product Compatibility and Download Center at

<http://www.rockwellautomation.com/rockwellautomation/support/pcdc.page>.

1. From the Product Compatibility and Download Center, search for your product or choose Energy Monitoring from the All Categories pull-down menu.

FIND DOWNLOADS

PowerMonitor 500 All Categories All Families

2. Select your product and firmware revision and click Downloads.
3. Click the download icon to access product release notes.

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, http://www.rockwellautomation.com/global/certification/overview.page	Provides declarations of conformity, certificates, and other certification details.

You can view or download publications at <http://www.rockwellautomation.com/global/literature-library/overview.page>. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

PowerMonitor 500 Unit Overview

About the PowerMonitor 500 Unit

The PowerMonitor™ 500 unit is an AC power monitor with a built-in advanced configuration system and LCD data display. The unit is designed for measurement of electrical parameters in various three-phase, single-phase (2-wire European), and split-phase (3-wire North American single phase) circuits. The unit modular housing can be mounted in a panel that provides IP65 degree protection from the front. The power monitor can be provided with analog or digital (relay) outputs. These outputs can be selected to output a pulse proportional to the real and reactive energy that is measured, or to annunciate alarms. The instrument can also be equipped with a serial RS-485/RS-232 port or an EtherNet/IP port.

Equipped with an optional communication port, the unit communicates power and energy parameters to applications, such as FactoryTalk® EnergyMetrix™ software. The power monitor works with these software applications to address these key customer applications:

- Load profiling - log power parameters such as real energy, apparent power, and demand, for analysis of power usage by loads over time
- Cost allocation - report actual energy cost by department or process to integrate energy information into management decisions
- Billing and sub billing - charge users of energy the actual usage cost rather than allocating by square footage or other arbitrary methods
- Power system monitoring and control - display and control power flow and energy utilization

PowerMonitor 500 Features and Functions

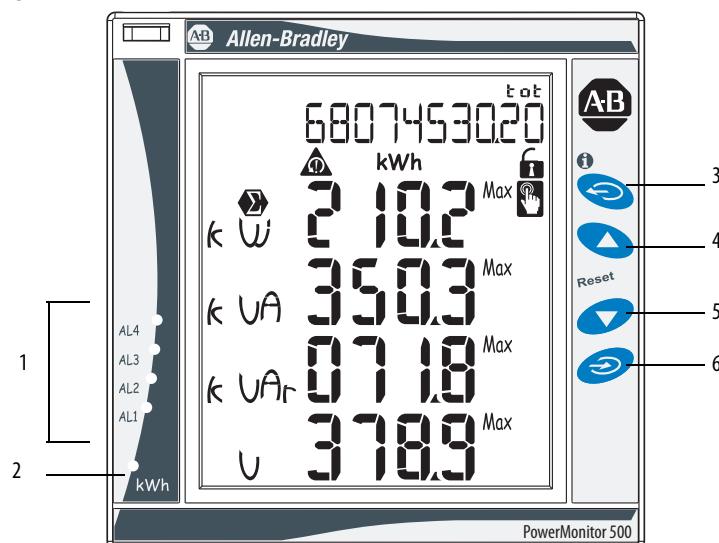
The power monitor connects to your three-phase, split-phase (3-wire North American single phase), or single-phase (2-wire European) AC power system directly or through instrument transformers (PTs and CTs). It converts instantaneous voltage and current values to digital values, and uses the resulting digital values in calculations of voltage, current, power, energy, and demand.

The power monitor family includes several models that combine the following basic components:

- A panel-mounted power monitor in one of two AC voltage ranges: 120/208V or 400/600V
- An optional pair of digital (relay) outputs
- An optional pair of 0...20 mA analog outputs
- Optional serial RS-232/RS-485 communication supporting Modbus RTU
- Optional Ethernet port supporting EtherNet/IP and Modbus TCP/IP
- Front protection degree: IP65, NEMA 4X, NEMA 12
- Up to four configurable virtual alarms
- Class 1 (kWh) according to EN62053-21
- Class B (kWh) according to EN50470-3
- Class 2 (kVARh) according to EN62053-23
- Accuracy $\pm 0.5\%$ of reading (current/voltage)
- Metering values display: Four rows with 4 digits
- Energy value display: Ten digits and the plus/minus sign
- Three-phase (system) variables: V(L-L), V(L-N), A, VA, W, VAR, power factor, frequency
- Single phase variables: V(L-L), V(L-N), A(L), An (calculated), VA, W, VAR, power factor
- System and single phase average and maximum variables
- Energy measurements (imported/exported): kWh and kVARh
- Revenue grade energy measurements per ANSI C12.1 Class 1.0, ANSI C12.1
- Run hours counter (8+2 digits)
- Real-time clock function
- Universal power supply: 120/240V AC 50/60 Hz, or 120/240V DC
- Front dimensions: 96 x 96 mm (3.78 x 3.78 in)

Front Panel Features

This section describes the front panel of the unit.


Front Panel Indicators and Control Buttons

The buttons are enhanced touch buttons. The touch icon turns on each time a button is pressed. We recommend using your forefinger to activate the touch buttons.

In Metering mode, buttons 4 and 5 (shown in [Figure 1](#)) are used to display the maximum and demand (average) values of the displayed measurements.

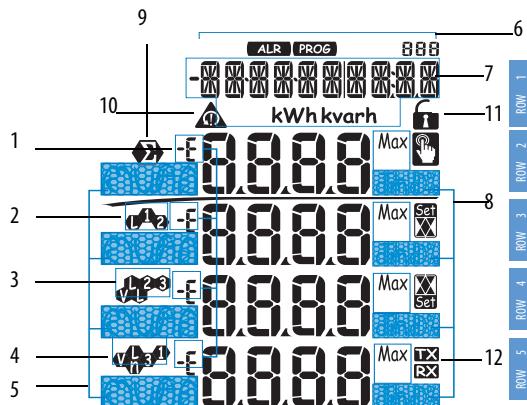
Figure 1 - Front Panel

Display Item	Description
1	Active Alarms AL1...AL4 status indicators.
2	Real Energy consumption-rate status indicator. Faster flashing indicates higher rate of consumption. Maximum frequency 16 Hz per EN5047-1.
3	Exit Button - Press quickly to exit submenus, or to exit the programming menus in Programming mode. When in the programming menu, press and hold Exit for at least 2 seconds to exit the programming menu. Press Program/select to confirm and return to the metering display and exit the programming menu without saving your changes. To save changes, use the Up and Down arrows to go to the End menu, then press Program/Select. When not in the programming menu, press and hold for more than 2 seconds to view the information pages. In Metering mode, press quickly to scroll through the energy counters.
4	Up Button - Press the Up button to browse menus and to increase values to be set.
5	Down Button - Press the Down button to browse menus and to decrease values to be set.
6	Program/select Button - Press and hold the Program/select button for at least 2 seconds to access the programming menu. When in the programming menu, press Program/select to confirm the programmed values in the active page. Press Program/select to enter and exit edit mode on the active page. When not in the programming menu, press Program/select to select measured values for display. Press quickly to scroll through the metering display pages. See Table 1 and Table 2 for a list of the measurement screens.

Additional Button Functions

Certain buttons have two functions. To access the second function, press and hold the button for more than 2 seconds.

Displays PowerMonitor 500 information screens, which provide reference standards, firmware revision, and year of manufacture.


Resets the max (maximum) of the displayed variables. You must press Program/select to confirm the reset.

Resets the dmd (demand) of the displayed variables. You must press Program/select to confirm the reset.

Display Features

Figure 2 - Features

Display Item	Description
1	Phase displacement indicator: inductive L, -L, or capacitive C, -C. The sign is based on the direction of real power flow. Positive = consuming power, negative = generating power. See the Geometric Representation of Power and Power Factor in Appendix A for more information. In Programming mode, the indicator displays E when a parameter can be edited.
2	Indicates the measured value phase (line-to-neutral L1 or line-to-line L12).
3	Indicates the measured value phase (line-to-neutral L2 or line-to-line L23).
4	Indicates the measured value phase (line-to-neutral L3 or line-to-line L31).
5	Engineering unit and multiplier indicator (k, M, V, W, A, var, PF, Hz, An).
6	ALR: the alarm display function is active. PROG: the programming function is active.
7	Area set aside for energy counters (see Table 1), text messages, date and time (format: dd.mm.yy/hh:mm).
8	Indicates that metering values are dmd (demand) or MAX (maximum) values.

Display Icons

Display Item	Description
9	Indicates that the metering values displayed are system (three-phase) values.
10	Indicates a phase sequence error alarm for Voltage rotation.
11	Configuration lock switch is not active. Always indicates unlocked.
12	Indication of serial RS-485/RS-232 data transmission (TX) and reception (RX).

Alarm Icons

- Indicates a high value alarm

- Indicates a low value alarm

Selecting Data to Display

[Table 1](#) and [Table 2](#) provide a guide to navigation through the metering data displays available on the front panel display. Row 1...Row 5 indicate the rows of the display (see [Figure 2 on page 11](#)).

 Press for <2 seconds to cycle through the data that is displayed in Row 1 of the display.

 Selected data for Row 1 remains displayed until is pressed.

Table 1 - Row 1 Data

Parameters	1	2	3	4	5	6	7	8	9	10
Row 1	Total kWh (+)	Total kVARh (+)	Total kWh (-)	Total kVARh (-)	kWh (+) part.	kVARh (+) part.	kWh (-) part.	kVARh (-) part.	Run Hours (99999999.99)	RTC

 Press for <2 seconds to cycle through the data that is displayed in Rows 2...5 of the display.

Selected data for Rows 2...5 displays momentarily and then returns to the default display.

Use and to cycle through the max, instantaneous, and demand (dmd) values.

IMPORTANT The appropriate data is displayed based on the configured system. For example, for delta (3P) systems, individual line data is not displayed for line-to-neutral voltage, VA, VAR, W, and power factor.

Table 2 - Rows 2...5 Data

Parameters Set	0	1	2	3	4	5	6	7
Row 2	V L _N Σ	V L _L Σ	A _n	Hz	VA Σ	VAR Σ	W Σ	PF Σ
Row 3	V L1	V L1-2	A L1	-	VA L1	VAR L1	W L1	PF L1
Row 4	V L2	V L2-3	A L2	-	VA L2	VAR L2	W L2	PF L2
Row 5	V L3	V L3-1	A L3	-	VA L3	VAR L3	W L3	PF L3

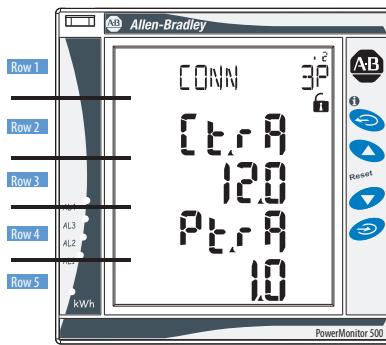
To access information pages, press and hold for more than 2 seconds,

then press and to select information items, as shown in [Table 3](#). After a period of inactivity, the information pages close, and the display returns to the default screen.

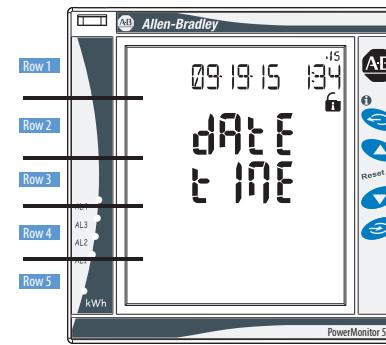
IMPORTANT Information items are not displayed for options that are not installed. For example, a module that does not have the analog output option does not display analog parameters (columns 11 and 12 in [Table 3](#)).

Table 3 - Rows 1...5 Information Pages

Page No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Row 1	Serial Number (9 digits)	Conn. xxx (3PN/3P/3P1/3P2/1P/2P)	Status Indicator Pulse kWh	Pulse OUT1 kWh/kVARh (1)	Pulse OUT2 kWh/kVARh (1)	Remote out ⁽¹⁾	AL1	AL2	AL3	AL4	Analog 1 ⁽¹⁾	Analog2 ⁽¹⁾	COM port ⁽¹⁾	IP Address	XX•XX•XX XXX:XX (Real-time clock)
Row 2	Yr. xx	CT.rA	0.001...1000 kWh per pulse	0.001...1000 kWh/kVARh per pulse	xxxx kWh/kVARh per pulse	Out 1	Variable	Variable	Variable	Variable	Hi.E ⁽²⁾	Hi.E ⁽²⁾	Add XXX	XXX	dAtE
Row 3	rEL	1.0...9 9.99k		+/- tot/ PAr	+/- tot/Par	on/oFF	Set 1	Set 1	Set 1	Set 1	0.0...9999k	0.0...9999k	1...247	XXX	tiME
Row 4	A.10	Pt.rA				Out2	Set 2	Set 2	Set 2	Set 2	Hi.A ⁽³⁾	Hi.A ⁽³⁾	bdr	XXX	
Row 5	1...60 (min) 'dmd'	1.0...9 999				on/oFF	(measurement)	(measurement)	(measurement)	(measurement)	0.0...100.0%	0.0...100.0%	9.6/19.2/38.4/115.2	XXX	


(1) If appropriate option is selected.

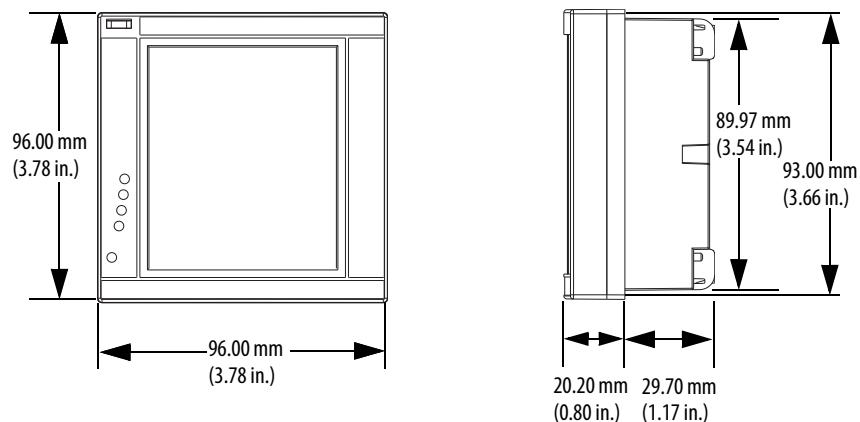
(2) Hi.E corresponds to the configured Max Input for the analog output.


(3) Hi.A corresponds to the configured Max Output for the analog output.

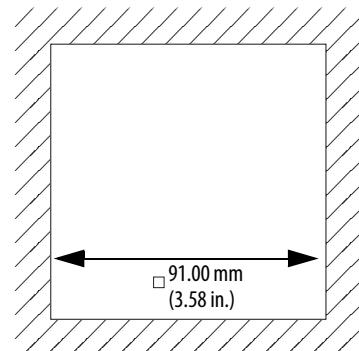
[Figure 3](#) and [4](#) are examples of how the information pages are displayed.

Figure 3 - Information Page 2

Figure 4 - Information Page 15



Installation and Wiring


Installation

This section shows the dimensions of the unit for installation in a panel.

Figure 5 - Base Unit Dimensions

Figure 6 - Panel Cut-out

Figure 7 - Factory-installed Optional Modules

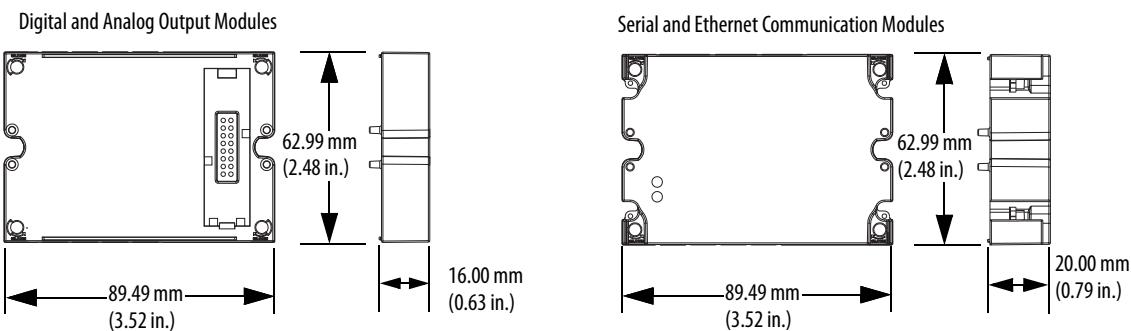


Figure 8 - Installation in Panel

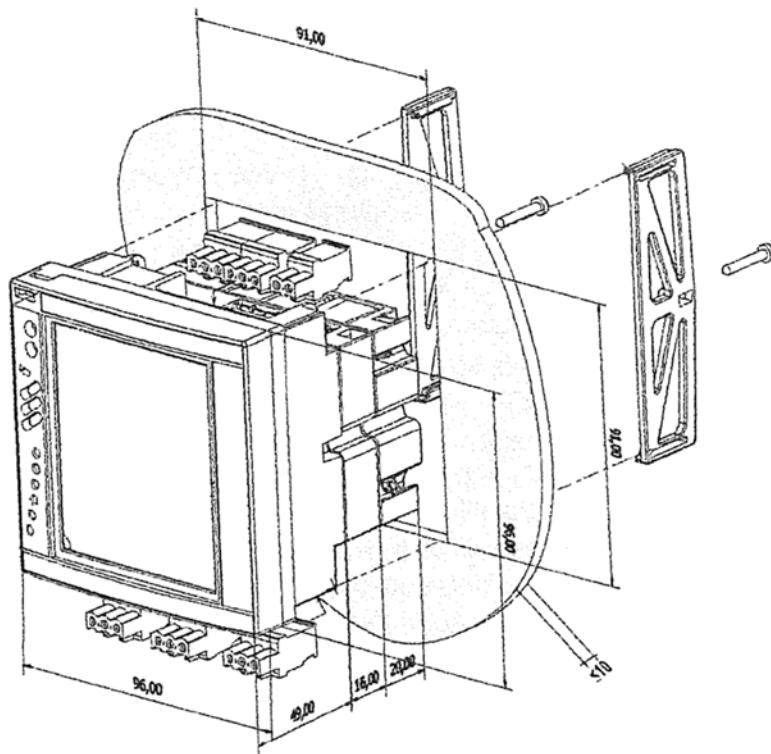
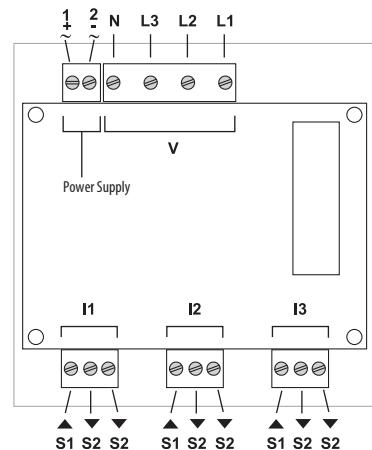



Figure 9 - Rear View of Unit Showing Wiring Terminals

Wiring Diagrams

The PowerMonitor™ 500 unit can monitor various three-phase, single-phase, and split-phase circuits. Select the voltage connections, current wiring, and system metering mode to match the configuration of the circuit being monitored.

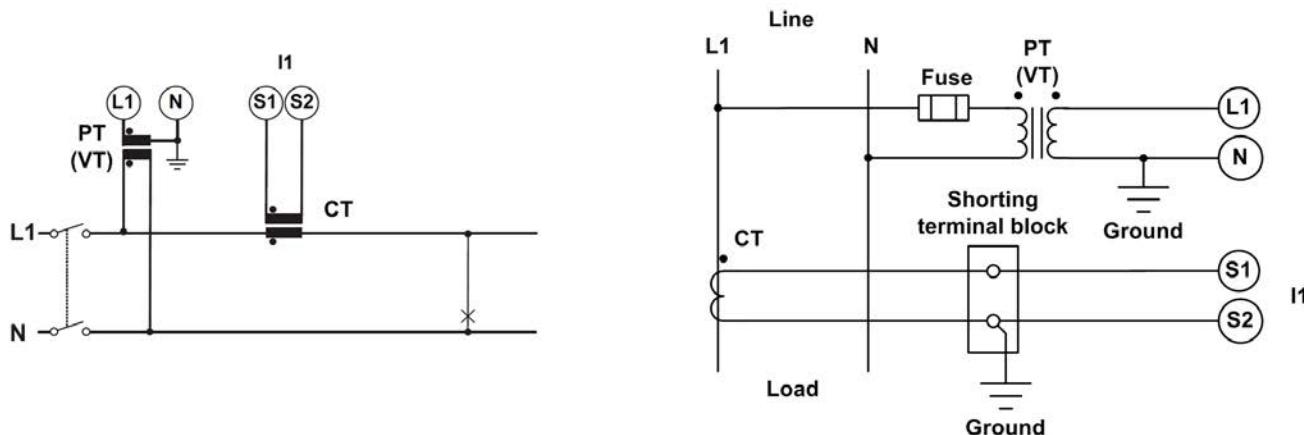
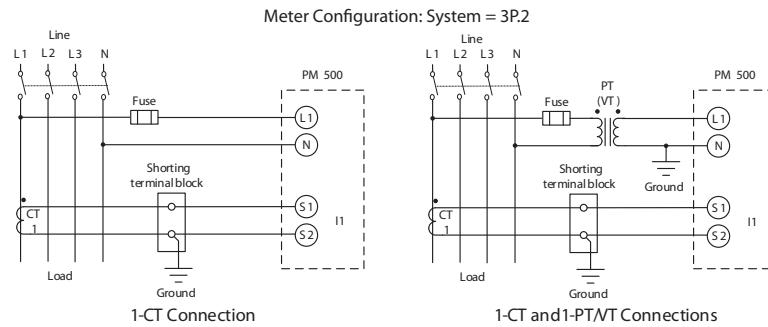
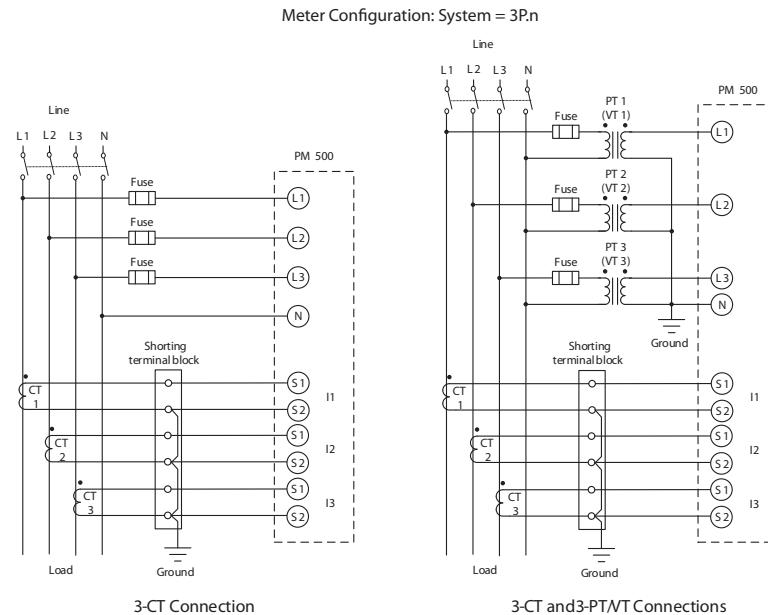

[Table 4](#) provides a key for you to select the proper wiring diagrams and system metering modes.

Table 4 - Wiring Diagram Explanation

Circuit type	No. of CTs	No. of PTs	Wiring Diagram	System Configuration
3-phase, 4-wire Wye Unbalanced load	3	-	Figure 12	3Pn
	3	3		
3-phase, 2-wire Wye Balanced load	1	-	Figure 11	3P2
	1	1		
3-phase, 3-wire Delta Unbalanced load	3	-	Figure 13	3P
	2	-		
Open Delta Unbalanced load	3	2	Figure 13	3P
	2	2		
Open Delta Balanced load	1	2	Figure 14	3P1
3-phase, Single CT Balanced load	1	-	Figure 14	3P1
	1	3		
Split-phase	2	-	Figure 15	2P
	2	2		
Single phase	1	-	Figure 16	1P
	1	1		

The wiring diagrams in this manual are drawn with U.S. (NEMA) conventions. For convenience, a connection diagram is shown in IEC style on the left and in its corresponding NEMA style (used in the U.S.) on the right.


Figure 10 - Wiring Diagram Interpretation


These diagrams are simplified. Wiring of the power monitor must comply with all applicable codes, standards, and regulations. Protect voltage and control power wiring with suitable overcurrent protection. Connect current transformer (CT) secondary wiring through a suitable shorting terminal block.

IMPORTANT In these diagrams, 'balanced load' configurations permit 3-phase measurement by using only one phase connection. Unbalance in the measured circuit affects the accuracy of the measurements.

Figure 11 - 3-phase, 2-wire Wye, Balanced Load

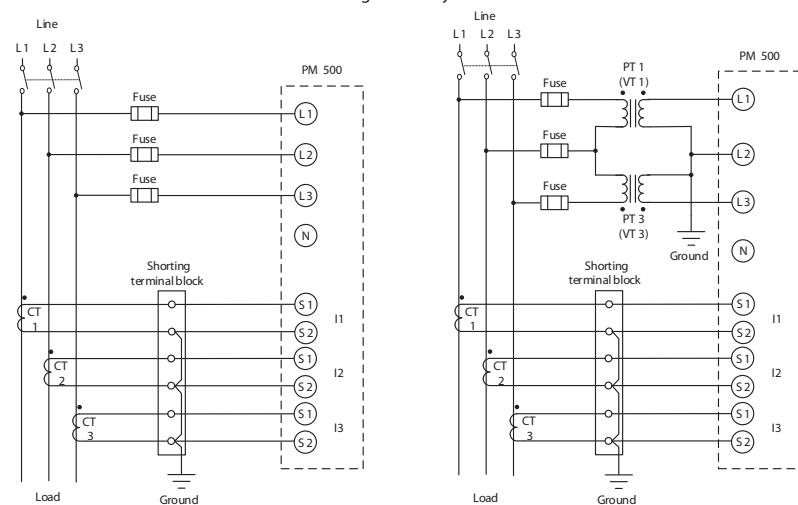


Figure 12 - 3-phase, 4-wire Wye, Unbalanced Load

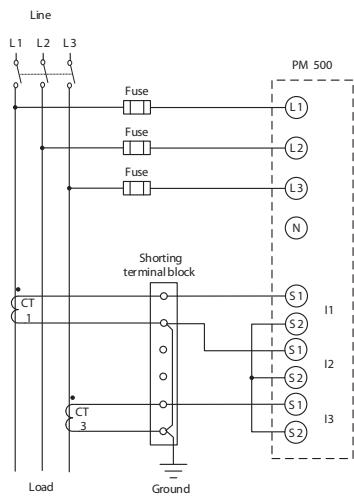
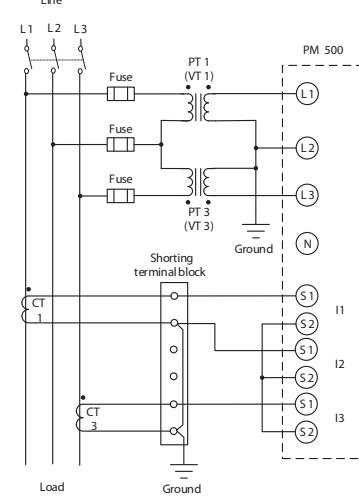


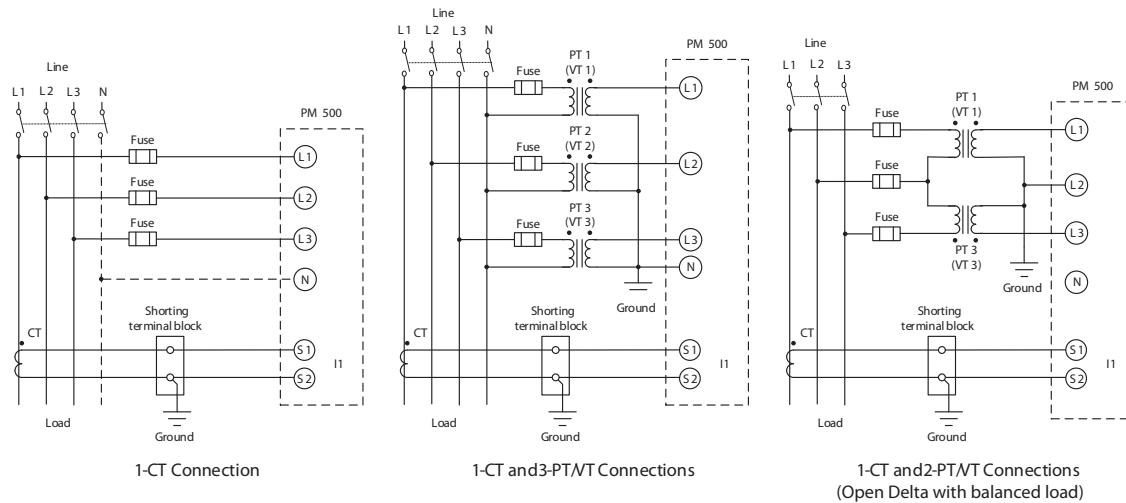
Figure 13 - 3-phase, 3-wire Delta, Unbalanced Load

Meter Configuration: System = 3P



3-CT Connection

2-CT Connection (ARON)


3-CT and 2-PT/VT Connections (Open Delta)

2-CT and 2-PT/VT Connections (ARON) (Open Delta)

Figure 14 - 3-phase, Single CT, Balanced Load

Meter Configuration: System = 3P.1

1-CT Connection

1-CT and 3-PT/VT Connections

1-CT and 2-PT/VT Connections (Open Delta with balanced load)

Figure 15 - Split-phase

Meter Configuration: System = 2P

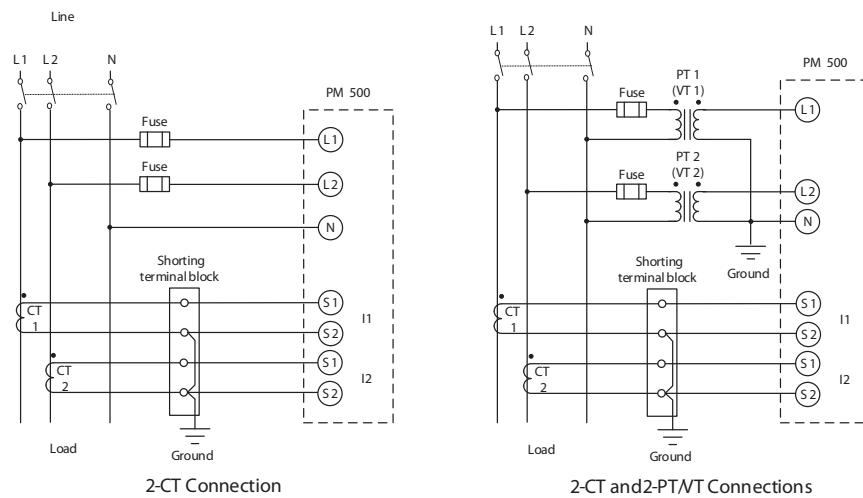
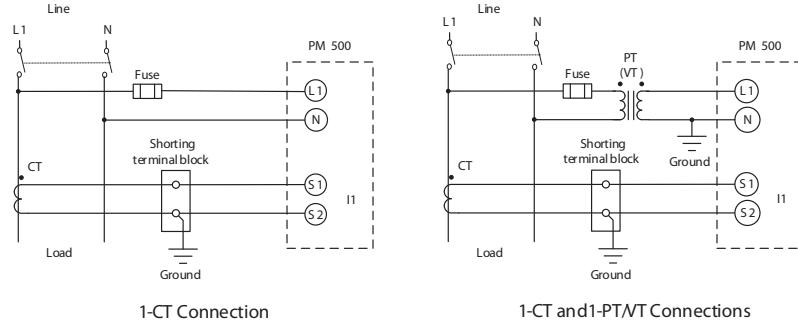
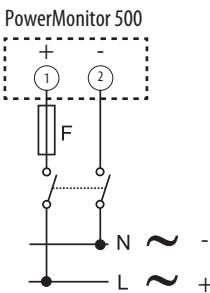



Figure 16 - Single-phase

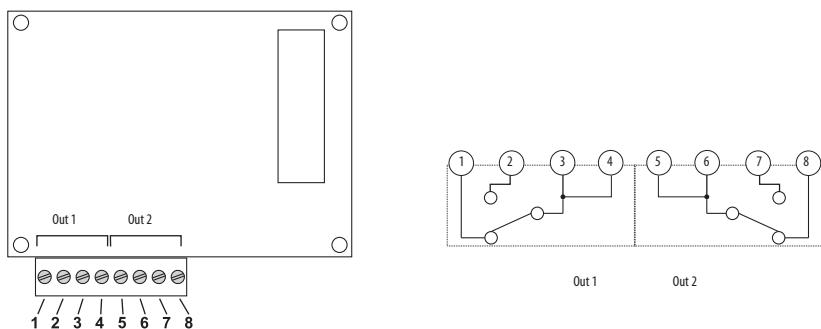
Meter Configuration: System = 1P



Supply Power

Connect the PowerMonitor 500 unit to a source of supply power through user-provided disconnecting means, such as a switch or circuit breaker close to the power monitor. Provide overcurrent protection that is sized to protect the wiring. Apply supply power only after all wiring connections are made to the unit.

Figure 17 - Supply Power


120/240V AC 50/60Hz, or 120/240V DC

$F = 250V (T) 630\text{ mA}$

Factory Installed Option Wiring

Figure 18 - Pulse (digital) Outputs (P option)

Figure 19 - Analog Outputs (A option)

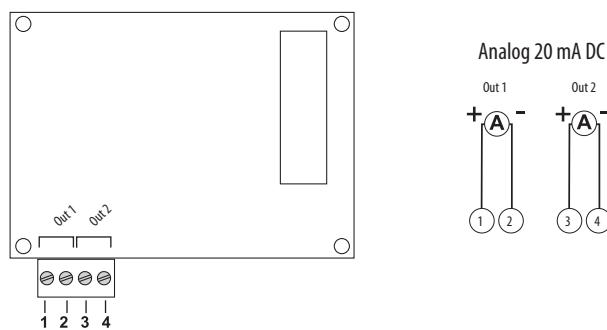
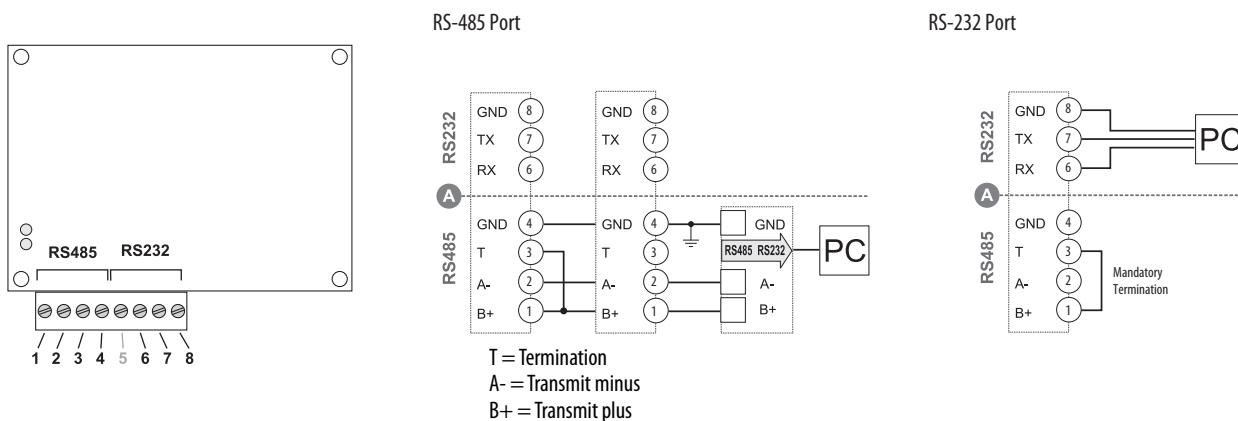
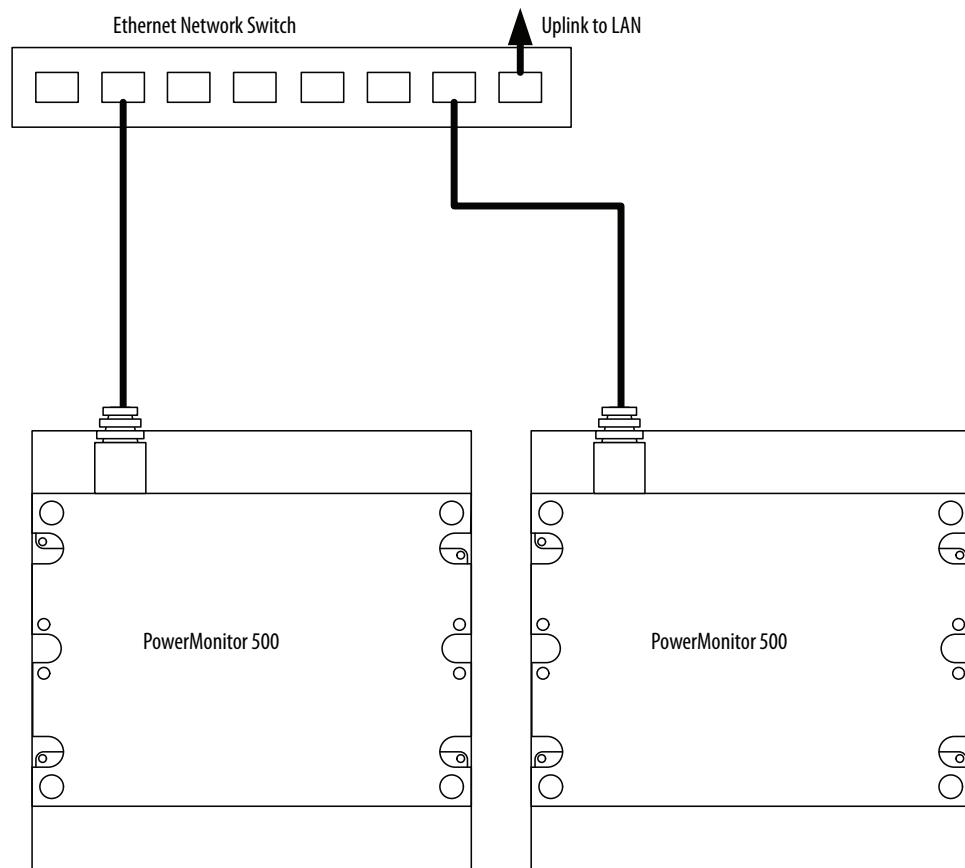




Figure 20 - Serial RS-485 and RS-232 Communication Wiring (485 option)

IMPORTANT Additional devices that are provided with RS-485 are connected in parallel. The termination of the serial output is implemented only on the last instrument of the network, with a jumper between (B+) and (T). The jumper applies an internal termination resistance between (A-) and (B+). The RS-232 and RS-485 communication ports cannot be connected and used simultaneously.

Figure 21 - Ethernet Communication (ENT option)

The PowerMonitor 500 unit connects to industry-standard Ethernet hubs and switches by using standard CAT-5 UTP (unshielded twisted-pair) cables with RJ45 connectors. [Table 5](#) shows the cable and connector pin assignments.

Table 5 - Ethernet Network Connections

Terminal	Signal
1	TX+
2	TX-
3	RX+
4	
5	
6	RX-
7	
8	

Notes:

Unit Configuration

TIP For configuration of units with base firmware revision 11 and earlier, see [Appendix D](#).

Configure with the Display

The PowerMonitor™ 500 unit provides menu-based configuration (programming) by using its front panel display. The programming menus let you select parameters to edit, select digits within parameters, and increase or decrease the value of each digit.

Place the unit in Programming mode by pressing Program/select (8) for about 2 seconds. The front panel displays the PASSWORD? menu page 0 in Editing mode. Enter the correct password by using the Up and Down arrows (the default password is 0) and press Program/select. The front panel then displays the BACKLIGHT menu page 10.

See the programming flowchart that begins on [page 28](#) for a view of the organization of programming menus and submenus. Each page is identified with a number, which is displayed in the top right corner. Menu page numbers end in zero, while submenu pages end in 1 through 9. For example, the System page is menu 40. Likewise, the Dmd page is menu 70, and the demand interval Time page is menu 72.

While you are programming the power monitor, the display items and control buttons function one way when you are navigating between menu or submenu pages, and another way when you are editing a menu page.

Figure 22 - Front Panel Display

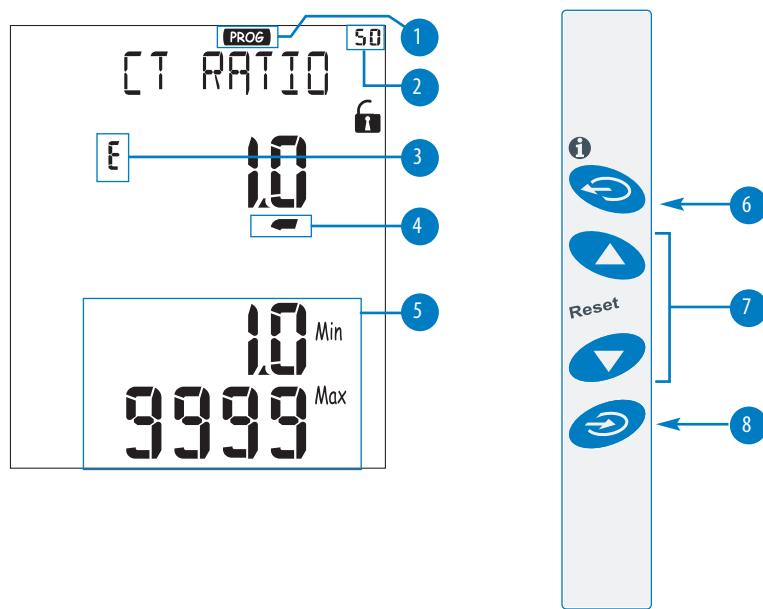
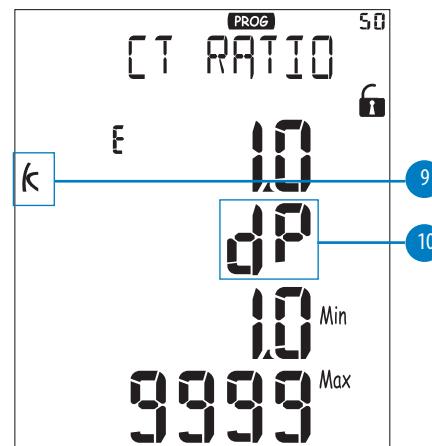


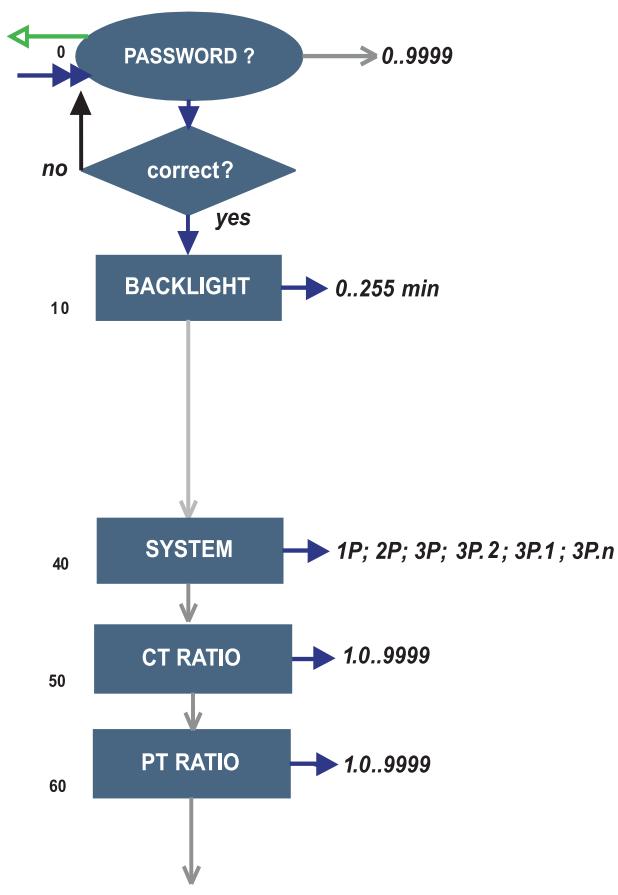
Table 6 - Front Panel Display Descriptions

Display Item	Description	Navigating Menus	Editing a Menu
1	Programming mode indicator	Indicates programming mode.	
2	Programming menu page	Identifies the current programming menu page. See the programming flowchart that begins on page 28 .	
3	Editing mode indicator	Does not appear.	Indicates the parameter being edited.
4	Cursor	Does not appear.	Appears beneath the digit currently being edited.
5	Permitted range	Displays the permitted range of values for the selected parameter.	
6	Exit button	<ul style="list-style-type: none"> When in a menu page, exits Programming mode without saving changes. Program/select button confirms exit. When in a submenu page, exits to menu page. 	<ul style="list-style-type: none"> Moves the cursor one digit to the left. When the leftmost digit is selected, dP is indicated and you can change the decimal point and multiplier (see Edit Decimal Point and Multiplier on page 27). When held for at least 2 seconds, cancels the edit and restores the previous value of the selected parameter.
7	Up button	Selects the next higher-numbered menu or submenu page.	<ul style="list-style-type: none"> Increments the value of the digit indicated by the cursor. When dP is indicated, increments the decimal point and multiplier.
	Down button	Selects the next lower-numbered menu or submenu page.	<ul style="list-style-type: none"> Decrements the value of the digit indicated by the cursor. When dP is indicated, decrements the decimal point and multiplier.
8	Program/select button	<ul style="list-style-type: none"> Press and hold for 2 seconds to enter the Program mode. Selects a menu page for editing. When in a menu page with submenus, displays the first submenu page. After pressing the Exit button, confirms exit from Programming mode without saving changes. From SAVE menu page 260, saves new configuration and exits Programming mode. 	Stores the new value of the selected parameter, but does not save the new configuration to the power monitor.


IMPORTANT To save programming changes, navigate to the SAVE menu page 260 and press Program/select. To exit the Programming mode without saving any changes, press Exit and confirm by pressing Program/select. If no buttons have been pressed for 2 minutes, the power monitor exits Programming mode without saving any changes.

TIP You can make programming changes by using the PowerMonitor 500 software.

Edit Decimal Point and Multiplier


When the cursor is beneath the last digit on the left, pressing Exit (6) lets you change the decimal point and the multiplier (9) (k or M). The blinking 'dP' (decimal point) text (10) indicates this capability.

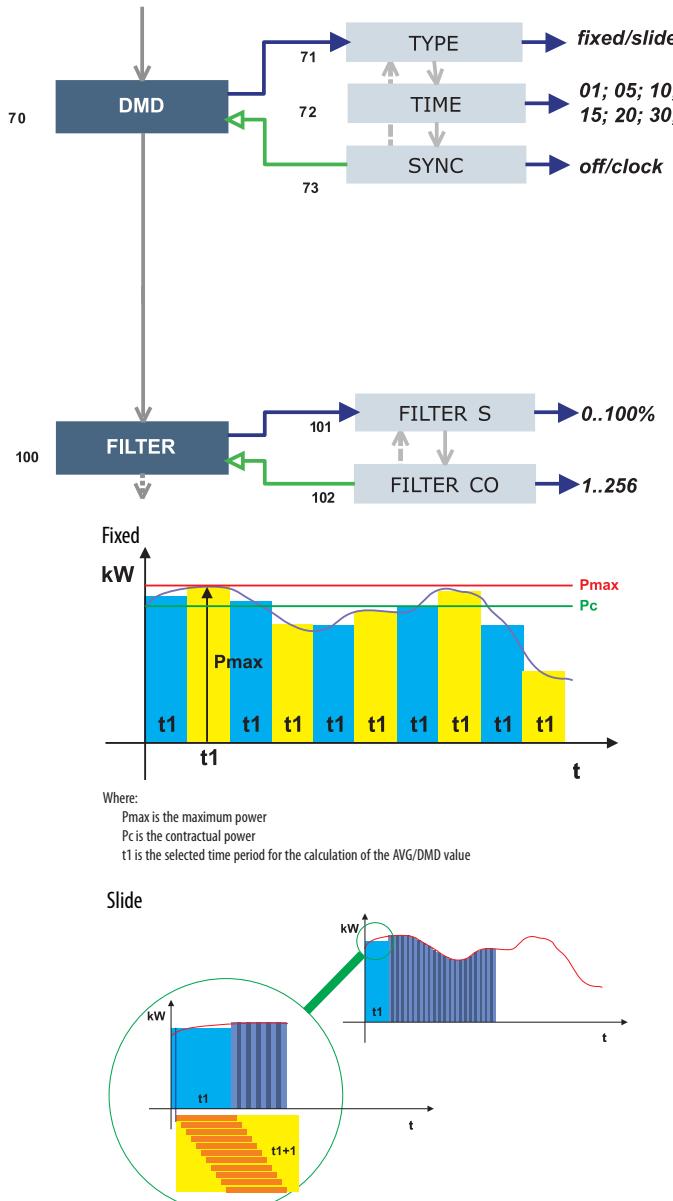
To modify the decimal point position and the multiplier, use the Up and Down arrow (7) to select the desired value.

Configuration Flowchart

The following flowchart shows the configuration menus and submenus that are accessed through the display. To navigate through the menu pages, use the up and down arrows. To enter Edit mode or to access a submenu, press the Program/select button. The menu pages available depend on your module type.

- 0 PASSWORD ?: enter password by using up and down arrows to change the digit. Use the Exit button to move the cursor between digits. Press the Program/select button to confirm password. The default password is 0.

- 10 BACKLIGHT: adjusts backlight time from 0...255 minutes (0 = always on).


-

- 40 SYSTEM: this function lets you select the type of electrical system.

See pages 17...20 for descriptions and wiring diagrams that correspond to the system type designations, such as, 3P and 3P.n.

- 50 CT RATIO: this function lets you select the value of the CT ratio (primary/secondary ratio of the current transformer being used). Example: if the CT primary (current transformer) has a current of 300 A and the secondary a current of 5 A, the CT ratio corresponds to 60 (300 divided by 5).

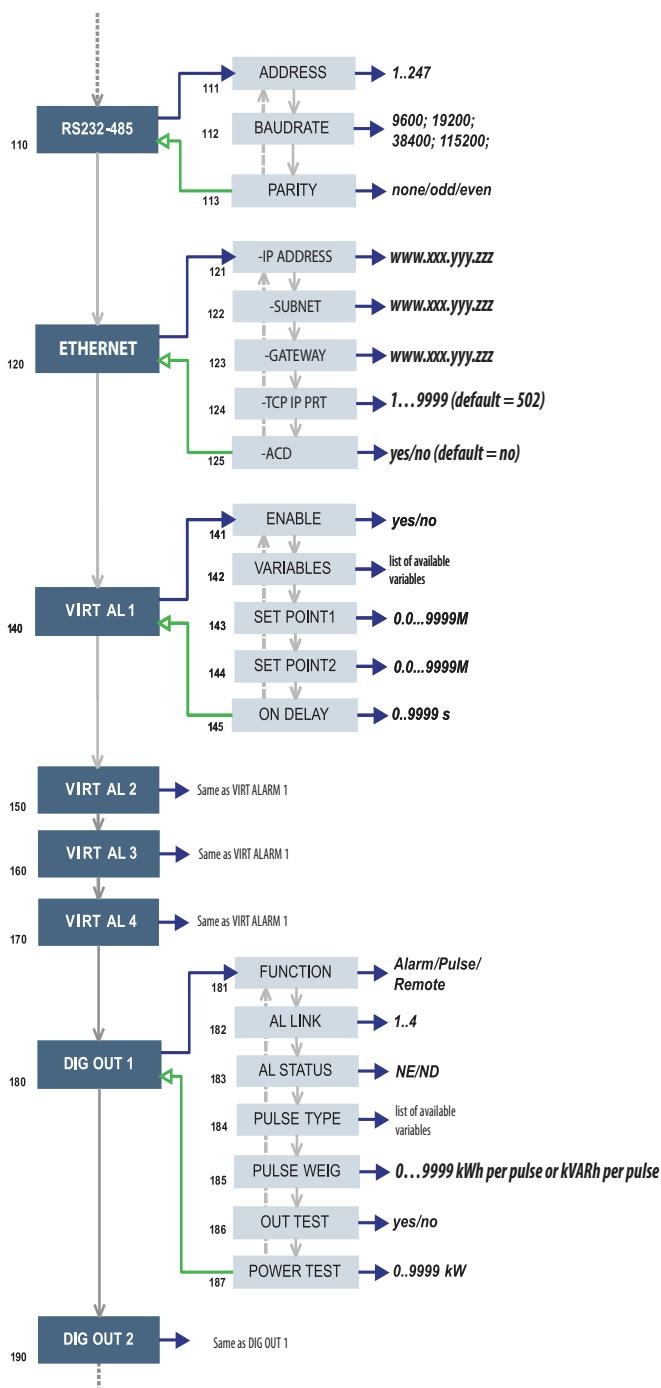
- 60 PT RATIO: this function lets you select the value of the PT (VT) ratio (primary/secondary ratio of the potential/voltage transformer being used). Example: if the primary of the connected PT is 20 kV and the secondary is 100V, then the PT ratio corresponds to 200 (20,000 divided by 100). If the voltage level is such that PTs are not required and are not in place, configure the PT ratio to 1.0.

- 70 DMD: This function lets you select the calculation method of the DMD/AVG value of the selected variable.

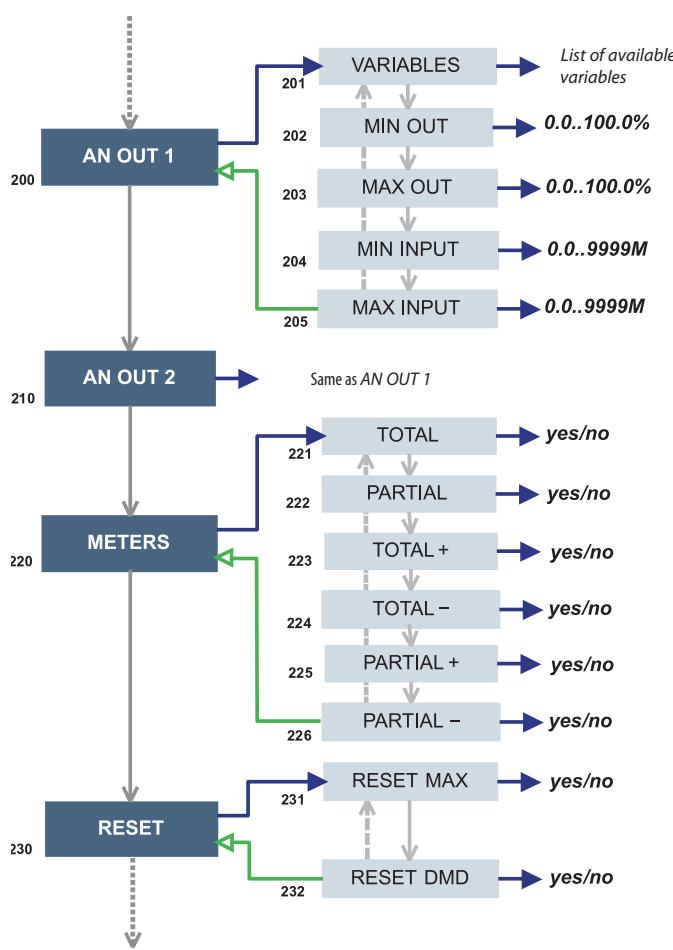
- 71 TYPE: select the type of Calculation mode to be used for the DMD/AVG calculation.

FIXED: The instrument calculates the AVG/DMD value of the measured variable over the selected interval, updates the AVG/DMD value at the end of the interval, then resets and starts a new calculation.

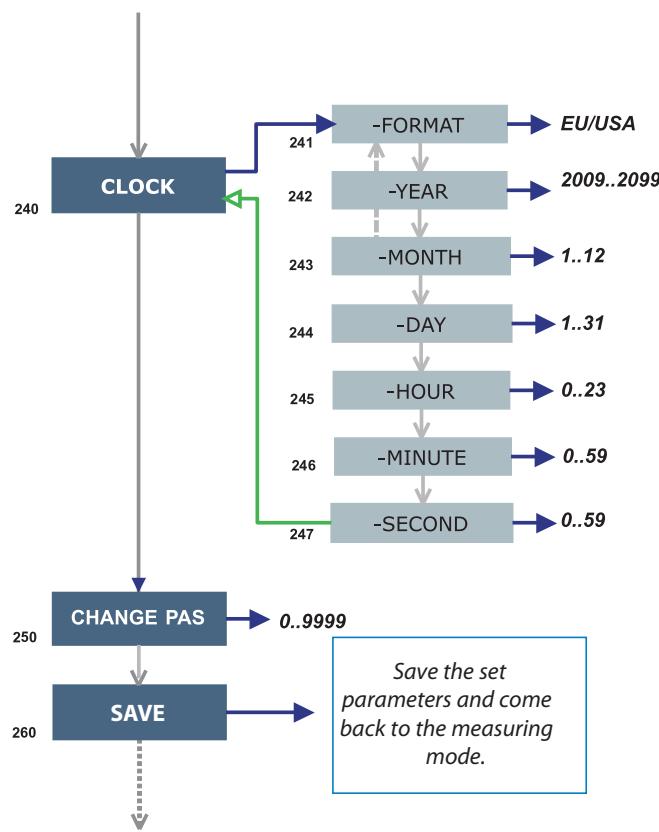
SLIDE: When first configured, the instrument calculates the AVG/DMD value and updates its value at the beginning after the first selected interval. After the first interval, the instrument calculates the AVG/DMD value every minute. After the calculation, the instrument generates a window whose width is the selected interval and that moves forward every minute.


- 72 TIME: select the time interval for the DMD/AVG calculation. Default is 15 minutes.
- 73 SYNC: select the Synchronization mode. That mode is the method that controls the calculation method of the average/demand according to the selected time.

- 100 FILTER: The digital filter makes it possible to stabilize the display of fluctuating measurements.


See [Digital Filtering Operation on page 35](#).

- 101 FILTER S: set the operating range (span) of the digital filter. The value is expressed as a % (filter to 0.0 means filter excluded).
- 102 FILTER CO: set the filtering coefficient of the instantaneous measures. By increasing the value, also the stability and the settling time of the measures are increased.


IMPORTANT Some specific menus display only if the relevant modules are installed.

- 110 RS232-485: User settings for the RS-232 and RS-485 serial communication ports.
- 120 ETHERNET: User settings for the Ethernet communication port.
- 140 VIRT AL 1: This virtual alarm function lets you set the alarm parameters.
 - 141 ENABLE: enable (YES) or disable (NO) the alarm.
 - 142 VARIABLES: set the variable to be linked to the alarm, see [Table 36](#) for variables.
 - 143 SET 1: set the on alarm set point of the variable.
 - 144 SET 2: set the off alarm set point of the variable.
 - 145 ON DELAY: set a delay on activation of the alarm.
- 180 DIG OUT 1: This function lets you link a virtual alarm to the digital relay output and to its working parameters.
 - 181 FUNCTION:
 - Alarm - the digital output is enabled when the associated alarm status occurs.
 - Pulse - the measured energy is retransmitted by the digital output with pulses.
 - Remote - the digital output can be controlled through a command that is sent through the serial communication port.
 - 182 AL LINK: select the virtual alarm that it has to be associated.
 - 183 AL STATUS: 'ND' (normally de-energized relay) or 'NE' (normally energized relay).
 - 184 PULSE TYPE: The variable linked to the pulse output. See [Table 37](#) for Pulse Output variables.
 - 185 PULSE WEIG: selects the pulse weight (kWh per pulse or kVARh per pulse).
 - 186 OUT TEST: Tests the digital output. YES enables the test, No disables the test.
 - 187 POWER TEST: sets a simulated power value (kW) to test the energy pulse output.

- 200 AN OUT 1: User programming of the analog outputs (0...20 mA).
 - 201 VARIABLES: selects the variable to be retransmitted with the analog output, see [Table 36](#) for variables.
 - 202 MIN OUTPUT: sets the value that is expressed as % of the output range (0...20 mA) that corresponds to the minimum measured value.
 - 203 MAX OUTPUT: selects the value that is expressed as % of the output range (0...20 mA) that corresponds to the maximum measured value.
 - 204 MIN INPUT: minimum value of the variable input range, corresponds to the 'MIN OUTPUT' value of the analog output.
 - 205 MAX INPUT: maximum value of the variable input range corresponds to the 'MAX OUTPUT' value of the analog output.
- 220 METERS: reset the ENERGY METERS. Choose among the following:
 - 221 TOTAL: resets all total energy meters.
 - 222 PARTIAL: resets all partial energy meters.
 - 223 TOTAL +: resets the total meters of imported energy.
 - 224 TOTAL -: resets the total meters of exported energy.
 - 225 PARTIAL +: resets the partial meters of imported energy.
 - 226 PARTIAL -: resets the partial meters of exported energy.
- 230 RESET: Resets the MAX or dmd stored values.

- 240 CLOCK:

- 241 FORMAT: UE, sets the European time format as 24h (00:00) or sets the time format as 12h (12:00 AM/PM).
- 242 YEAR: sets the current year.
- 243 MONTH: sets the current month.
- 244 DAY: sets the current day.
- 245 HOUR: sets the current hour.
- 246 MINUTE: sets the current minute.
- 247 SECOND: sets the current second.

- 250 CHANGE PAS: this function lets you modify the PASS value with a new value (from 0...9999).

- 260 SAVE:

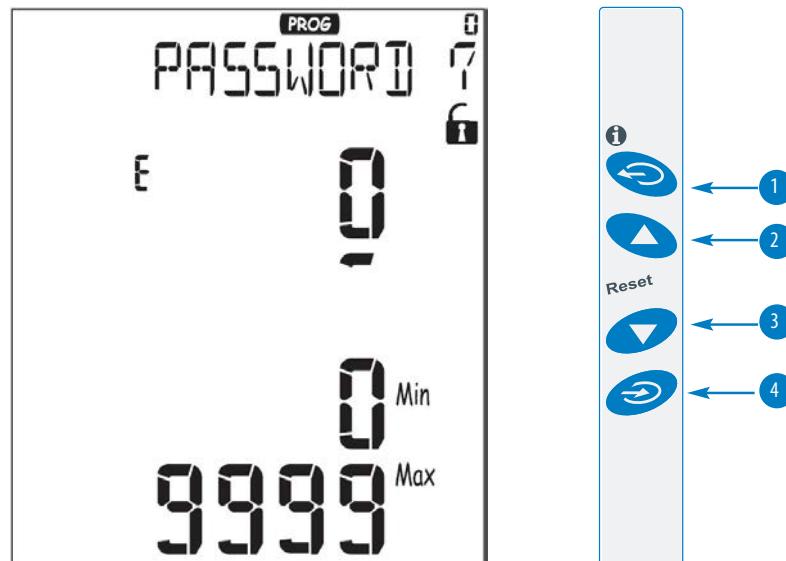
- To save programming changes, press Program/select.
- To exit the Programming mode without saving any changes, press Exit and confirm by pressing Program/select.
- If no buttons are pressed for two minutes, the unit exits Programming mode without saving changes.

Configure the IP Address

The PowerMonitor 500 unit comes with default IP configuration settings that you can view or change by using the front panel display.

The factory default settings are:

IP Address: 192.168.0.1


Subnet Mask: 255.255.255.0

Gateway Address: 0.0.0.0

Follow these steps and use [Figure 23](#) to configure a static IP address.

1. Press and hold (4) for at least two seconds to enter Programming mode.
PROG appears at the top of the display and the PASSWORD page is displayed.

Figure 23 - Program Screen and Navigation Buttons

2. On the Password page, press (4) to enter the default password of 0.
3. Press the Up arrow (2) to navigate through the pages to the Ethernet page.
4. Press (4) to access the ETHERNET page
The IP ADDRESS page is displayed.
5. Press (4) to edit the parameter.
The 'E' appears on the first row.

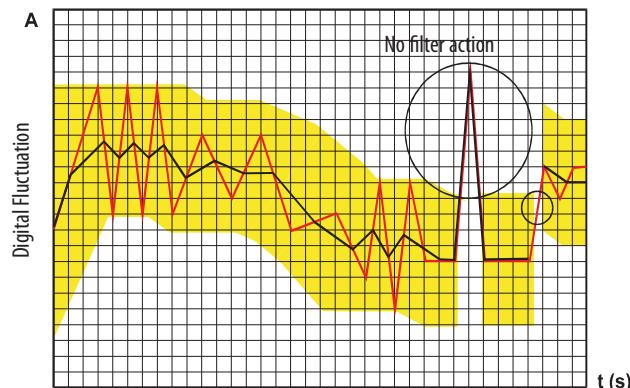
6. Press the up (2) and down (3) arrow to increase/decrease the value.
7. Press (1) to edit the next row on the display.

For example, to edit the second octet of the IP address.
8. Press (4) when you have finished editing each octet.
9. Press the Up arrow (2) to access the SUBNET page.
10. Repeat steps 5...8 to configure the subnet mask.
11. Press the Up arrow (2) to access the GATEWAY page.
12. Repeat steps 5...8 to configure the gateway address.
13. Press (1) to return to the ETHERNET page.
14. Press the Up arrow (2) several times to navigate through the pages to the SAVE page.

IMPORTANT For firmware revision 11.000 and earlier, there is no SAVE page. Instead, navigate to the END page.

15. Press (4) to save the changes and exit Programming mode.

The IP address of the PowerMonitor 500 unit is now successfully configured.


Digital Filtering Operation

Digital filtering smooths out the display of fluctuating values. The parameter FILTER S defines the operating range of the filter. This operating range is represented as a yellow band (each small square is one digit). While the measured value (red curve in [Figure 24](#)) is within this band, the filter is active. Once the value exceeds the operating range, the filter is deactivated and a new band is active around the new value. The range of fluctuation (in digits) is a good starting value for such parameters.

The parameter FILTER CO represents the filtering coefficient. The higher the FILTER CO, the smoother the curve of the displayed values (black in [Figure 24](#)). There is not a theoretical rule to define this parameter, it is set in the field. One rule is to start with the value of the FILTER S coefficient and then increase FILTER CO until the desired stability is reached.

The digital filter affects the values retransmitted both via serial communication and analog output.

Figure 24 - Digital Filter

Digital Filter Programming Examples

This section gives digital filter programming examples.

Example 1

This example describes how to stabilize the displayed value of the VL-N variable, which fluctuates between 222V and 228V. The parameters of the digital filter have to be programmed as follows.

FILTER S: The variable fluctuates within the mean value whose amplitude is equal to $\pm 0.75\%$ of the full scale rated value of the variable itself, which is obtained by the following calculation:

$$(228 - 222)/2 = \pm 3V, \text{ then } \pm 3*100/400V = \pm 0.75\%$$

where 400V is the line-to-neutral rated value of a 1420-V2 unit input

The FILTER S parameter, which represents the action range of the digital filter, is programmed to a value that must be slightly higher than the percentage amplitude of the fluctuation, for example, 1.0%.

FILTER CO: if the new value that is measured by the instrument is within the action range of the filter, the new displayed value is obtained by adding algebraically the previous value to the variation divided by the filtering coefficient. As a consequence, a value higher than this coefficient implies a longer settling time and therefore better stability. You generally obtain the best result by setting the filtering coefficient to a value equal to at least 10 times the range parameter value.

In the following example, $1.0*10=10$, the stability of the filtering coefficient can be improved by increasing the filtering coefficient; the allowed values are included within 1 and 255.

Example 2

This example describes how to stabilize the value of the displayed System Real Power (W), which fluctuates 300...320 kW. In this example, the load is connected to the instrument with a 300/5 A CT and a direct measure of the voltage.

The parameters of the digital filter must be programmed as follows.

FILTER S: the variable fluctuates within the mean value whose amplitude is equal to $\pm 2.78\%$ of the full scale rated value of this variable. This value is obtained by the following calculation:

$$(320 - 300) / 2 = \pm 10 \text{ kW}, \\ \text{then } \pm 10 * 100 / 360 \text{ kW} = \pm 2.78\%,$$

where 360 kW is the rated value of the System Real Power of a 1420-V2 unit input, at the CT and VT ratios and obtained with the following formula:

$$V_{LN} * V_T * I_N * C_T * 3$$

Where:

V_{LN} = rated input voltage (400V for the V1 input)

V_T = primary/secondary ratio of the voltage transformer being used

I_N = rated current (5 A)

C_T = primary/secondary ratio of the voltage transformer being used (in this example $400 * 1 * 5 * 60 * 3 = 360 \text{ kW}$).

The FILTER S parameter, which represents the digital filtering coefficient action range, is programmed to a value that must be slightly higher than the percentage of the fluctuation: for example 3.0%.

FILTER CO: if the new value that is acquired by the unit is within the filtering action range, the new displayed value is obtained by adding algebraically the previous value to the variation divided by the filtering coefficient. As a consequence, a value higher than this coefficient implies a higher settling time and therefore better stability. Therefore, the best result is obtained by setting the filtering coefficient to a value equal to at least 10 times the value of the range parameters. In the example, $3.0 \cdot 10 = 30$. To improve the stability, you can increase the filtering coefficient; the admitted values are included within 1 and 255.

Example 3

It is necessary to stabilize the value of the displayed variable A L1 (phase current 1), which fluctuates in the range 470 A and 486 A.

To be able to manage the alarm function and activation and deactivation of the relay, this value is not to be subject to continuous fluctuations. In this example, we have considered using a 500/5 A CT. Program the parameters of the digital filter as follows:

FILTER S: the variable fluctuates within the mean value whose amplitude is equal to $\pm 1.60\%$ of the full scale rated value of this variable (obtained with the calculation:

$$(486 - 470) / 2 = \pm 8 \text{ A, then } \pm 8 \cdot 100 / 500 \text{ A} = \pm 1.60\%$$

where 500 A is the value referred to the primary of the transformer being used).

The FILTER S parameter, which represents the action range of the digital filter, is programmed to a value slightly higher than the percentage amplitude of the fluctuation, for example 2.0%.

FILTER CO: if the new value that is acquired by the instrument is within the filtering action range, the new displayed value is calculated algebraically adding to the previous value the variation divided by the filtering coefficient. As a consequence, a higher value of this coefficient implies a higher settling time and therefore better stability. Therefore, the best result is obtained setting the filtering coefficient at a value equal to at least 10 times the value of the range parameter. In the example, $2.0 \cdot 10 = 20$. To improve the stability, you can increase the filtering coefficient; the admitted values are within 1 and 255.

Analog Output Configuration Examples

These examples apply to units with catalog numbers 1420-V1A and 1420-V2A.

Example 1: Power value retransmission with a 0...20 mA analog output.

This example describes how to retransmit measured power up to 100 kW with a 4...20 mA signal. Program the unit as follows:

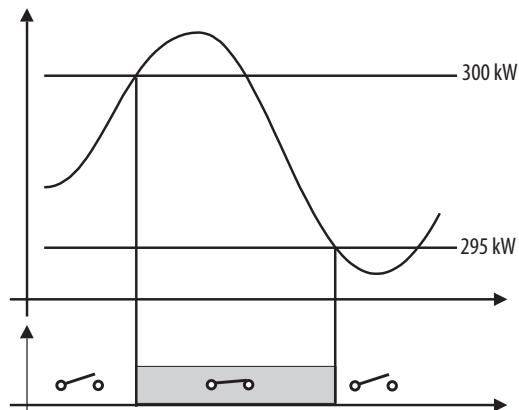
- VARIABLE: $W\Sigma$ (system real power)
- MIN OUT: 20.0% means 4 mA. The calculation that is used is the following:
$$(100 * \text{minimum output}) / \text{full scale output} = 100 * 4 \text{ mA} / 20 \text{ mA} = 20\%$$
- MAX OUT: 100.0% means 20 mA. The calculation is the following:
$$(100 * \text{maximum output}) / \text{full scale output} = 100 * 20 \text{ mA} / 20 \text{ mA} = 100$$
- MIN INPUT: 0.0 k; the multiplier k, M, G can be selected on the unit according to the chosen VT and CT values
- MAX INPUT: 100.0 k; the k, M, G multipliers can be selected on the unit according to the selected VT and CT values

Example 2: Retransmission of the power factor (PF) value with the 0...20 mA analog output.

In this example, the unit is configured to retransmit the whole range of the allowed values for the PF with a signal from 0...20 mA. The value of the PF variable can vary between C0.001 and L0.000 (for each phase); these values, when retransmitted, correspond to 0 mA and 20 mA. When the PF value is equal to 1, the analog output value corresponds to the middle of the scale, which is 10 mA. Program the instrument as follows:

- VARIABLE: PF L1 (or L2 or L3 or $PF\Sigma$)
- MIN OUT: 0.0%
- MAX OUT: 100.0%
- MIN INPUT: C0.001 (the C symbol shows a CAPACITIVE value)
- MAX INPUT: L0.001 (the L symbol shows an INDUCTIVE value). L0.001 has been chosen as minimum value to be set to avoid undesirable rapid changes of the outputs

Alarm Configuration Example


These examples apply to units with catalog numbers 1420-V1P and 1420-V2P.

This example describes an alarm when a measured real power value exceeds a programmed threshold. For example, when 300 kW are exceeded, the alarm occurs and the load that is controlled by the relay output is disconnected.

IMPORTANT The PowerMonitor 500 unit is not intended to be applied as a protective device.

An 'UP' alarm is selected. The recommended programming is the following:

- ENABLE: YES
- VARIABLES: W system (W.)
- SET POINT 1: 300 kW
- SET POINT 2: 295 kW
- ON DELAY: set the desired number of seconds, for example 5 seconds

To program a 'DOWN' alarm, configure SET POINT 1 to be a lower value than SET POINT 2.

Digital Output Configuration Examples

These examples apply to units with these catalog numbers:

- 1420-V1P
- 1420-V1P-xxx
- 1420-V2P
- 1420-V2P-xxx

There are three ways to trigger the Digital Output:

- Automatically, by a configured alarm
- Automatically, by an energy counter (pulse)
- Manually, by using a Modbus write command (remote)

Example 1 - Alarm

When the digital output function is set to Alarm, the output is enabled when the associated alarm status is ON.

This example describes how to trigger the digital output by using a configured alarm.

Program the unit as follows within the DIG OUT 1 or DIG OUT 2 menu page:

- FUNCTION: Alarm
- AL LINK: AL1 (Alarm 1). This is the alarm that triggers the output
- AL STATUS: nd (normally de-energized)

The following DIG OUT parameters are not used when FUNCTION = Alarm:

- PULSE TYPE
- PULSE WEIG
- OUT TEST
- POWER TEST

In this example, the digital output is triggered, when Alarm 1 goes Active.

Example 2 Pulse

When the digital output function is set to Pulse, the measured energy is retransmitted by the digital output with pulses.

This example describes how to retransmit measured energy with a pulse output.

Program the unit as follows within the DIG OUT 1 or DIG OUT 2 menu page:

- FUNCTION: Pulse
- PULSE TYPE: Total kWh (the output pulses when the selected variable accumulates by the amount configured for the Pulse Weight)
- PULSE WEIG: 0.5 (the output pulses every 0.5 accumulated of the configured Pulse Type)

The following DIG OUT parameters are not used when FUNCTION = Pulse:

- AL LINK
- AL STATUS

In this example, the digital output pulses for every 0.5 kWh accumulated.

Pulse Output Test

The following DIG OUT parameters are optional and can be used to test the pulse output feature.

To test the Digital output pulse feature, first power cycle the PowerMonitor 500 unit, then configure the following parameters in the DIG OUT page:

- OUT TEST: yes
- POWER TEST: 60kW
- PULSE WEIG: 1 (kWh per pulse)

Given this equation with the configured parameters in this example, we can expect 1 pulse per minute with the simulated pulse output test.

POWER TEST/PULSE WEIG = Pulses per minute

$$60 \text{ kW} * (1 \text{ pulse}/1 \text{ kWh}) = 60 \text{ pulses}/\text{hour} = 1 \text{ pulse per minute}$$

The pulse output test stays active until the unit is power cycled or until the OUT TEST is changed back to 'no' to disable the test.

Example 3 Remote

When the digital output function is set to Remote, the digital output is controlled by using Modbus communication.

This example describes how to manually set or clear the digital outputs by using Modbus commands.

Program the unit as follows within the DIG OUT 1 or DIG OUT 2 menu page:

- FUNCTION: Remote

The following DIG OUT parameters are not used when FUNCTION = Remote:

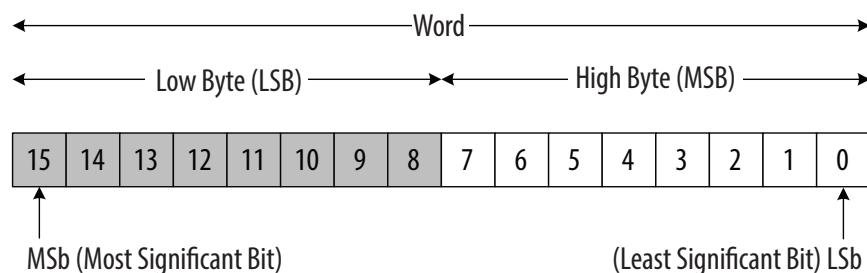
- AL LINK
- AL STATUS
- PULSE TYPE
- PULSE WEIG
- OUT TEST
- POWER TEST

When the DIG OUT Function is set to Remote, the digital output is set or cleared by using the Modbus commands found in [Table 33](#) on [page 71](#).

Notes:

Communication

EtherNet/IP Communication


EtherNet/IP communication is supported in PowerMonitor™ 500 units that are ordered with optional Ethernet communication. Communication parameters in the power monitor must be configured. See [Unit Configuration on page 25](#). The Ethernet communication port supports 100 or 10 Mbps data rate, half-duplex, or full-duplex.

TIP The Ethernet hardware address (MAC ID) is printed on the unit label.

The PowerMonitor 500 unit provides nine Assembly Instances that contain real-time, maximum, demand, energy, and status data that can be read by a client by using implicit messaging (Class 1) or Explicit Messaging (Class 3 or UCMM).

[Appendix A](#) lists the Assembly Instances, sizes, data types, and other details. The power monitor returns EtherNet/IP data as little-endian, the same byte order that is used in the Logix family of programmable controllers.

Figure 25 - Byte Order Example

The power monitor supports the following communication commands:

- CIP Generic Assembly Object (Class 04), Get_Attribute_Single (Service Code 0x0E) for Attribute 3 (data)
- CIP Generic Assembly Object (Class 04), Get_Attribute_Single (Service Code 0x0E) for Attribute 4 (size in bytes)

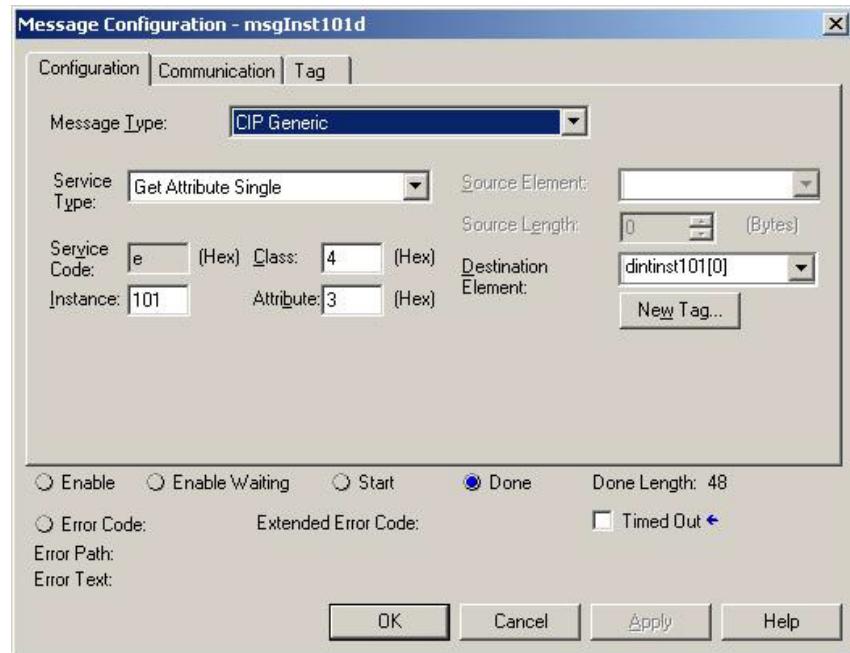
IMPORTANT The power monitor does not support configuration or commands on EtherNet/IP network. To write the configuration of command data, refer to the section on [Modbus Communication on page 54](#).

See [Appendix C](#) for additional information on the EtherNet/IP communication implementation in the PowerMonitor 500 unit.

Electronic Data Sheet (EDS)

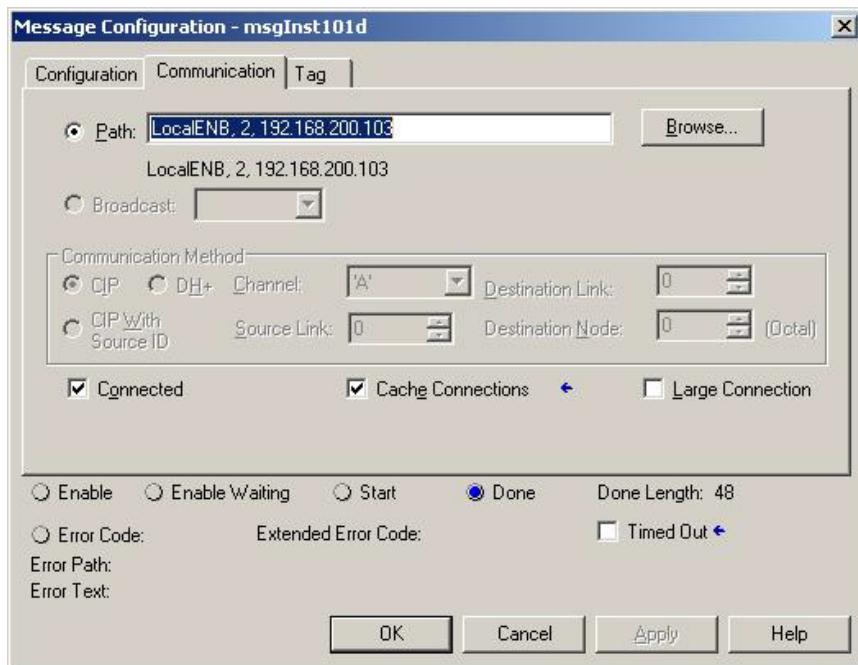
The EDS file is used to convey device configuration data that is provided by the manufacturer. You can obtain EDS files for the PowerMonitor 500 unit by downloading the file from the following website:

<http://compatibility.rockwellautomation.com/Pages/MultiProductDownload.aspx>


You can install EDS files on your computer by using the EDS Hardware Installation Tool that comes with RSLogix® Classic software, RSNetWorx™ for EtherNet/IP software, or other tools.

Explicit Messaging - Message Setup with CIP Generic

The following example shows how to configure your message instruction to read from a data table in the power monitor by using a CIP Generic message type for the Studio 5000 Logix Designer® application. This setup applies to ControlLogix® and CompactLogix™ programmable logic controllers. The CIP Generic message type does not support single element reads or writes. In this example, we read the Real-time Metering Values (Voltage and Current) data table from the power monitor.


We assume that you are familiar with basic message programming in a Logix controller. Once you configure the logic, message tag, destination tag, and message instruction, follow these steps to configure the message. This example uses a CompactLogix controller, revision 20.

1. Choose the appropriate parameters in the Message Configuration window.

Parameter	Choice
Message Type	Choose message type CIP Generic.
Service Type	Read: Select service type Get Attribute Single (E hex)
Instance	See Appendix A for the CIP Instance of the data table to read. In this example, the power monitor Real-time Metering Values (Voltage and Current) data table is instance 101 (decimal).
Class	4 hex
Attribute	3 hex
Destination	Get Attribute Single - This element is the first element of the controller tag that stores the data being read. The tag is an array of the applicable data type the same length as the Assembly Instance; in this example, 12 REAL elements.
Source Element	Not applicable to a Read
Source Length	Not applicable to a Read

2. Click the Communication tab and enter the path and method.

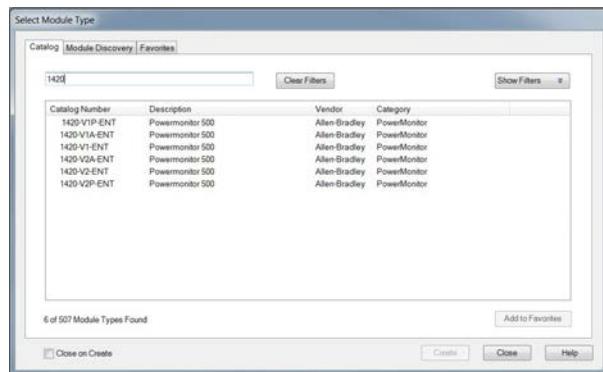
3. Click OK to complete message setup.

Path	Method
<Ethernet Module, Port (always 2 for Ethernet), Power Monitor IP Address>	CIP

Implicit Messaging

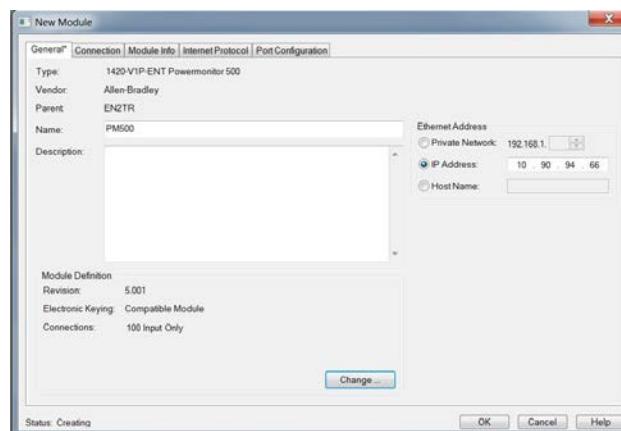
You can configure a PowerMonitor 500 unit by using either a generic Ethernet module input data connection or an EDS Add-On profile.

EDS Add-On Profile

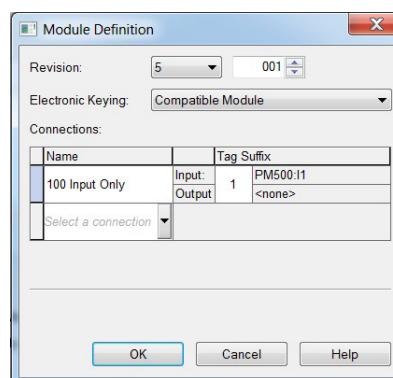

You can add the PowerMonitor 500 unit to the Logix Designer application version 21 or later or RSLogix 5000 software version 20 with an electronic data sheet (EDS) based AOP (Add-on profile). Register the PowerMonitor 500 EDS file by using the EDS Hardware Installation Tool on the computer on which you develop the software project.

IMPORTANT The EDS AOP is available for PowerMonitor 500 units with Ethernet firmware revision 5.001 and later.

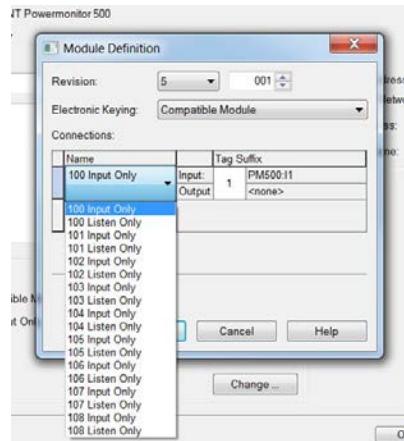
Download the PowerMonitor 500 EDS files from the Product Compatibility and Download Center


<http://www.rockwellautomation.com/global/support/pcdc.page>

When adding a new module in the Studio 5000 application, the PowerMonitor 500 module is displayed under the catalog number 1420 after the EDS file has been installed.



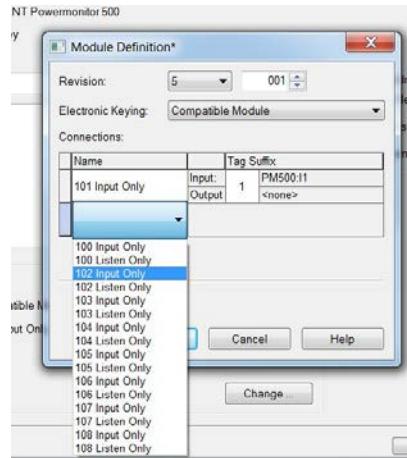
To use the EDS Add-on Profile, follow these steps.


1. Select the catalog number for the PowerMonitor 500 and click Create.
2. Enter the name and IP address of the power monitor.
3. Click Change under Module Definition.

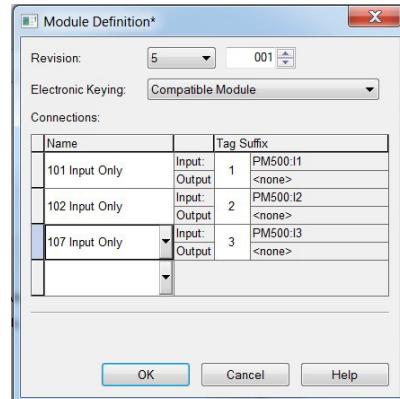
The Module Definition window opens. By default, the first connection is set to 100 Input Only.

4. Click the Connection Name cell to open the pull-down menu of available selections for the first connection.

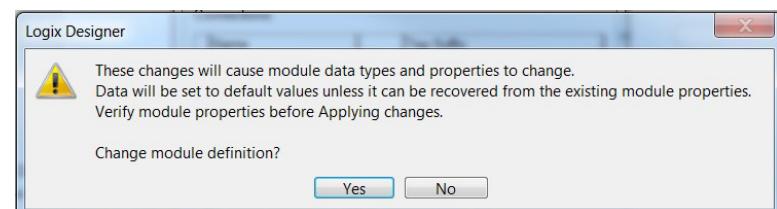
Table 7 - Available Connections


Connection Name ⁽¹⁾	Description	Data Access	Module-defined Data Type	Size (Bytes)	Tag Suffix ⁽²⁾
100 Input Only	Product Information (CIP assembly instance 100)	Read	AB:[catalog number]_BC244CBD:I:0	24	[ModuleName]:lx
100 Listen Only					[ModuleName]:lx
101 Input Only	Real-time Voltage and Current	Read	AB:[catalog number]_4F149A65:I:0	52	[ModuleName]:lx
101 Listen Only					[ModuleName]:lx
102 Input Only	Real-time Power, PF, Frequency	Read	AB:[catalog number]_A691F258:I:0	76	[ModuleName]:lx
102 Listen Only					[ModuleName]:lx
103 Input Only	Max Voltage and Current	Read	AB:[catalog number]_18E8A782:I:0	52	[ModuleName]:lx
103 Listen Only					[ModuleName]:lx
104 Input Only	Max Power, PF, Frequency	Read	AB:[catalog number]_922708DF:I:0	72	[ModuleName]:lx
104 Listen Only					[ModuleName]:lx
105 Input Only	Demand Voltage and Current	Read	AB:[catalog number]_4A75AFE4:I:0	52	[ModuleName]:lx
105 Listen Only					[ModuleName]:lx
106 Input Only	Demand Power, PF, Frequency	Read	AB:[catalog number]_DBFAFEEF:I:0	72	[ModuleName]:lx
106 Listen Only					[ModuleName]:lx
107 Input Only	Energy	Read	AB:[catalog number]_BC1E731C:I:0	76	[ModuleName]:lx
107 Listen Only					[ModuleName]:lx
108 Input Only	Alarm and Output Status	Read	AB:[catalog number]_D1B1C88D:I:0	8	[ModuleName]:lx
108 Listen Only					[ModuleName]:lx

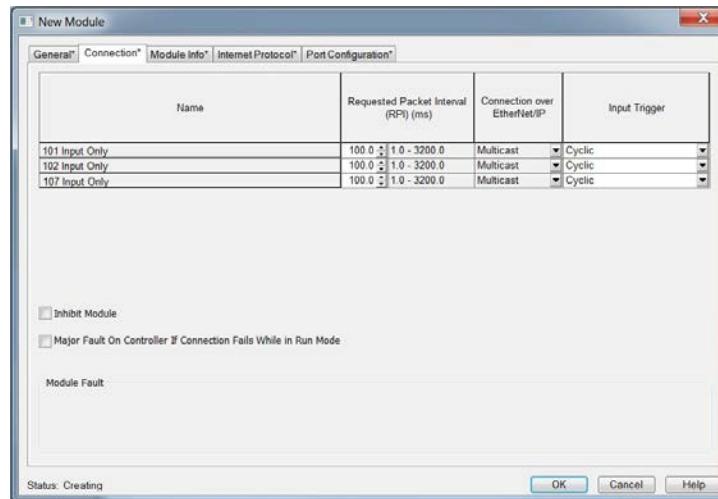
(1) Use the Listen Only connection when an Input Only connection exists with another controller.


(2) Where the x is the connection number configured in the Module Definition.

5. To select multiple input instances, click on the next available cell under the Name column to open the pull-down selection list and choose the desired connection.


A maximum of nine connections can be selected from the selections shown in [Table 7](#).

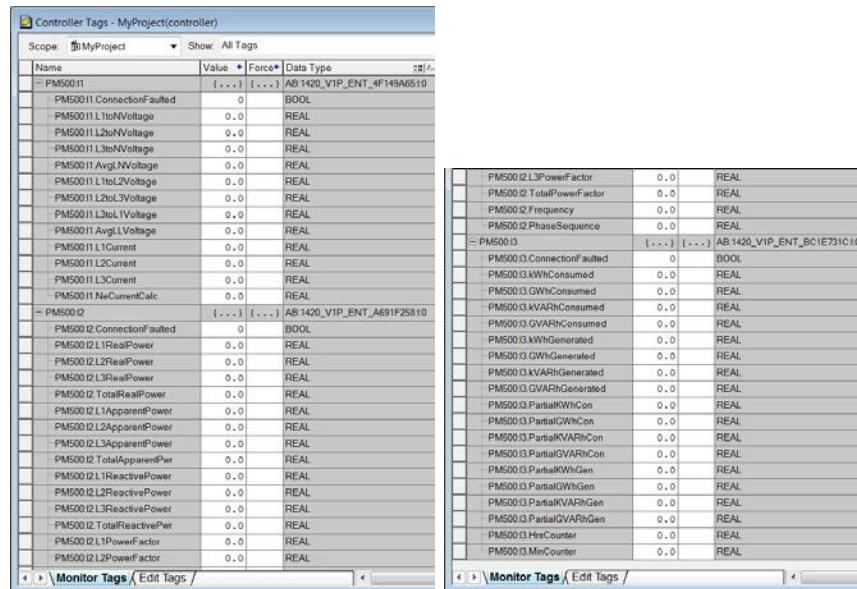
6. After you select the connections, click OK.



7. Click Yes to change the Module Definition.

8. On the Connection tab, enter the desired Requested Packet Interval (RPI).

The default RPI is 20 ms. Do not enter an RPI less than 100 ms for the PowerMonitor 500 unit.

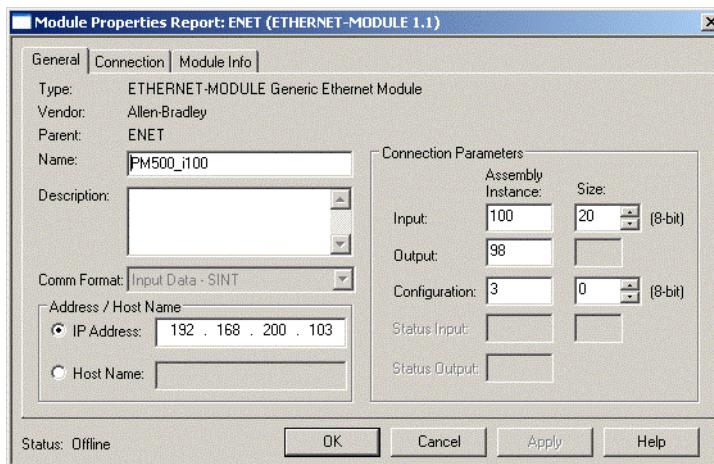

9. Click OK to create the module.

When you create the module, controller tags are generated for each Connection name that is selected in the Module Definition.

In this example, controller tags are created for instances 101, 102, and 107.

Tag Suffix/Connection Number	Module Definition Connection	Assembly Instance (1)	Controller Tags Created	Module-defined Data Types Created
1	101 Input Only	101	[ModuleName]:1	AB:[catalog number]_4F149A65:I:0
2	102 Input Only	102	[ModuleName]:2	AB:[catalog number]_A691F258:I:0
3	107 Input Only	107	[ModuleName]:3	AB:[catalog number]_BC1E731C:I:0

(1) The input tag consists of the Assembly Instance and a single bit (ConnectionFaulted) to monitor the connection to the device.


The PowerMonitor 500 Input Only connection does not require an Exclusive Owner connection to exist. The Input Only connection lets you configure the power monitor by using the display, Modbus communications, or the software configuration tool.

Generic Ethernet Module Input Data Connection

The PowerMonitor 500 unit with EtherNet/IP communication supports Class 1 connections to the nine Assembly Instances. To configure a Class 1 connection to a selected Assembly Instance with a Logix controller, follow these steps.

1. Open the controller program offline in the Logix Designer application (or online in Program mode if you are using a ControlLogix controller).
2. In the I/O configuration tree, right-click the Ethernet communication module (for example, 1756-EN2T), and choose New Module.
3. From the Communication pull-down menu, choose ETHERNET-MODULE Generic Ethernet Module.

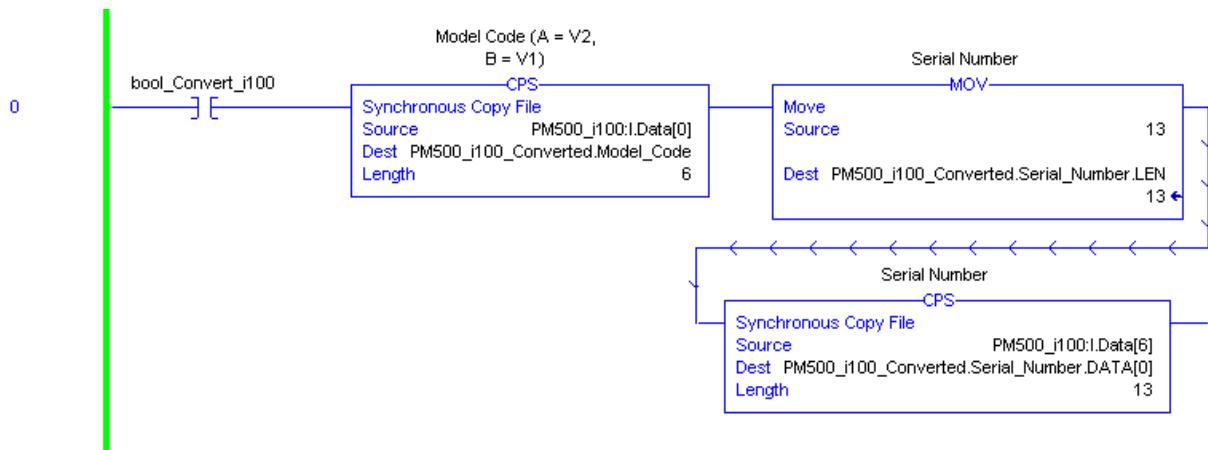
4. Enter the setup parameters as listed in this dialog box and explained in [Table 8](#).

Table 8 - Module Properties Setup Parameters

Item	Choices			
General Tab				
Name	Required; must be IEC 1131-3 compliant			
Description	Optional			
Comm Format	Depends on selected Assembly Instance ⁽¹⁾			
Address/Host Name	IP Address	IP address of target PowerMonitor 500 unit		
	Host Name	Not applicable		
Connection Parameters	Assembly Instance	Size	Comm Format	Data Table Description
Input (select one)	100	20	Input Data - SINT	Product Information
	101	12	Input Data - REAL	Real-time Voltage and Current
	102	18	Input Data - REAL	Real-time Power, PF, Frequency
	103	12	Input Data - REAL	Max Voltage and Current
	104	17	Input Data - REAL	Max Power, PF, Frequency
	105	12	Input Data - REAL	Dmd Voltage and Current
	106	17	Input Data - REAL	Dmd Power, PF, Frequency
	107	18	Input Data - REAL	Energy Meters
	108	2	Input Data - INT	Alarm and Output Status
Output	98	N/A	Inst. 98 used for Input Only connection	
	99	N/A	Inst. 99 used for Listen Only connection ⁽¹⁾	
Configuration	3	0	Instance 3 is a placeholder only	
Connection Tab				
RPI	100 ms or greater			
Inhibit Module	Optional - unchecked by default			
Major Fault	Optional - unchecked by default			
Unicast Connection	Optional - checked by default			

(1) Use the Listen Only connection only when an Input Only connection exists with another controller.

5. When finished, click OK to save the new module.


The module updates its input tag <Name>.I.Data at the Requested Packet Interval (RPI).

			AB:ETHERNET_...
	PM500_i100				
	PM500_i100:I.Data				SINT[20]
	PM500_i100:I.Data[0]	'A'	ASCII	SINT	
	PM500_i100:I.Data[1]	8	Decimal	SINT	
	PM500_i100:I.Data[2]	'A'	ASCII	SINT	
	PM500_i100:I.Data[3]	1	Decimal	SINT	
	PM500_i100:I.Data[4]	'\$00'	ASCII	SINT	
	PM500_i100:I.Data[5]	0	Decimal	SINT	
	PM500_i100:I.Data[6]	'B'	ASCII	SINT	
	PM500_i100:I.Data[7]	'N'	ASCII	SINT	
	PM500_i100:I.Data[8]	'0'	ASCII	SINT	
	PM500_i100:I.Data[9]	'6'	ASCII	SINT	
	PM500_i100:I.Data[10]	'4'	ASCII	SINT	
	PM500_i100:I.Data[11]	'0'	ASCII	SINT	
	PM500_i100:I.Data[12]	'0'	ASCII	SINT	
	PM500_i100:I.Data[13]	'0'	ASCII	SINT	
	PM500_i100:I.Data[14]	'6'	ASCII	SINT	
	PM500_i100:I.Data[15]	'0'	ASCII	SINT	
	PM500_i100:I.Data[16]	'0'	ASCII	SINT	
	PM500_i100:I.Data[17]	'0'	ASCII	SINT	
	PM500_i100:I.Data[18]	'A'	ASCII	SINT	
	PM500_i100:I.Data[19]	'\$00'	ASCII	SINT	

You can use additional programming to show the data in another way. Instances 101...107 show data in the REAL, or floating point, format. However, Instance 100 combines ASCII characters with numeric byte (SINT) values.

This program displays the contents of Instance 100 in a more human-readable fashion:

- The XIC instruction on tag 'bool_Convert_i100' enables the conversion.
- The first CPS instruction copies the first 6 bytes of the module input data tag.
- The MOV instruction sets the serial number string length to 13.
- The last CPS instruction copies the serial number from the module input data tag that starts at element (byte) 6.

The destinations of the CPS instructions are in a tag with a user-defined data type.

Name:	PM500_Inst100			
Description:				
Members:	Data Type Size: 96 byte(s)			
	Name	Data Type	Style	Description
	Model_Code	SINT	ASCII	Model Code (A = V2, B = V1)
	Base_Firmware_Version	SINT	Decimal	Firmware Rev Number
	EtherNetIP_Model_Code	SINT	ASCII	EtherNet/IP Model Code
	EtherNetIP_Firmware_Version	SINT	Decimal	EtherNet/IP Firmware Rev Number
	Analog_Output_Model_Code	SINT	ASCII	Analog Output Model Code (If Exists)
	Analog_Output_Firmware_Revision	SINT	Decimal	Analog Output Firmware Rev
Serial_Number	STRING			Serial Number
LEN	DINT	Decimal		Read Only
DATA	SINT[82]	ASCII		Read Only

The destination tag shows the data in this way.

PM500_i100_Converted	(...)		
PM500_i100_Converted.Model_Code	'A'	ASCII	Model Code (A = V2, B = V1)
PM500_i100_Converted.Base_Firmware_Version	8	Decimal	Firmware Rev Number
PM500_i100_Converted.EtherNetIP_Model_Code	'A'	ASCII	EtherNet/IP Model Code
PM500_i100_Converted.EtherNetIP_Firmware_Version	1	Decimal	EtherNet/IP Firmware Rev Number
PM500_i100_Converted.Analog_Output_Model_Code	'\$00'	ASCII	Analog Output Model Code (If Exists)
PM500_i100_Converted.Analog_Output_Firmware_Revision	0	Decimal	Analog Output Firmware Rev
PM500_i100_Converted.Serial_Number	'BN0640006000A'		Serial Number
PM500_i100_Converted.Serial_Number.LEN	13	Decimal	Serial Number
PM500_i100_Converted.Serial_Number.DATA	(...)	ASCII	Serial Number

Modbus Communication

For a complete description of the MODBUS protocol refer to the following documents that can be downloaded from <http://www.modbus.org>:

- Modbus_Application_Protocol_V1_1a
- Modbus_Messaging_Implementation_Guide_V1_0a

Modbus Functions Supported

Modbus RTU is supported in PowerMonitor 500 units that are ordered with optional RS-485/RS-232 communication. In addition, Modbus TCP/IP is supported in units that are ordered with optional Ethernet communication. Communication parameters in the power monitor must be configured. See the [Unit Configuration](#) section of this manual.

IMPORTANT We recommend that you use Modbus TCP/IP to configure or write to the PowerMonitor 500 unit and that you use Ethernet/IP to read the PowerMonitor 500 unit.

The PowerMonitor 500 unit supports the following Modbus functions:

- 0x03 - Read n Holding Registers
- 0x04 - Read n Input Register
- 0x06 - Write one Holding Register
- 0x10 - Write multiple registers
- 0x08 - Diagnostic (with subfunction code 0x00)
- 0x42 - Read n Special Registers (vendor specific)
- Broadcast mode (write command on address 00h)

In this section, Modbus addresses are indicated in two ways. The 'Modbus address' is expressed as the 6-digit input register address (example: 300123), used with Modbus function code 0x04. The 'Physical address' is the hexadecimal representation of the word address that is included in the communication frame.

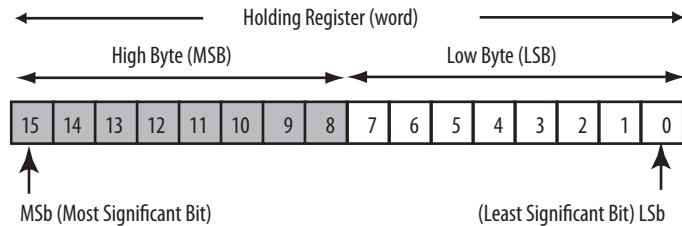
Modbus function 0x04 can be used with the Modbus address by substituting a 4 for the first digit (example: 400123). With that distinction, functions 0x03 and 0x04 return the same data.

To avoid errors due to signal reflections or line coupling, a termination resistor must be connected at the RS-485 ports of the master station and of the furthest power monitor from the master station. In the PowerMonitor 500, you can implement a jumper between (B+) and (T) to apply the required termination resistance between (A-) and (B+) internally. Termination on both ends is necessary even in case of point-to-point connection, with short distances.

The GND connection is optional if a shielded cable is used. For connections longer than 1000 m (3280 ft), a line amplifier is necessary.

Data Types Supported

Format	Description	Bits	Range
INT	Integer	16	-32768...32767
UNIT	Unsigned Integer	16	0... 65535
DINT	Double integer	32	- 2^{31} ... 2^{31-1}
UDINT	Unsigned Double Integer	32	0... 2^{32-1}
ULINT	Unsigned long Integer	64	0... 2^{64-1}
REAL	Single-precision Floating Point	32	$-(1+[1-2^{-23}]) \times 2^{127} \dots 2^{128}$


The IEEE754 representation of a 32-bit Floating Point number as an Integer is defined as follows.

Bits		
31	30...23	22...0
Sign	Exponent	Mantissa

$$Value = (-1)^{sign} \times 2^{(Exponent-127)} \times 1.Mantissa$$

Modbus Register Format

Modbus registers are 16-bit words that are organized as shown in the following diagram.

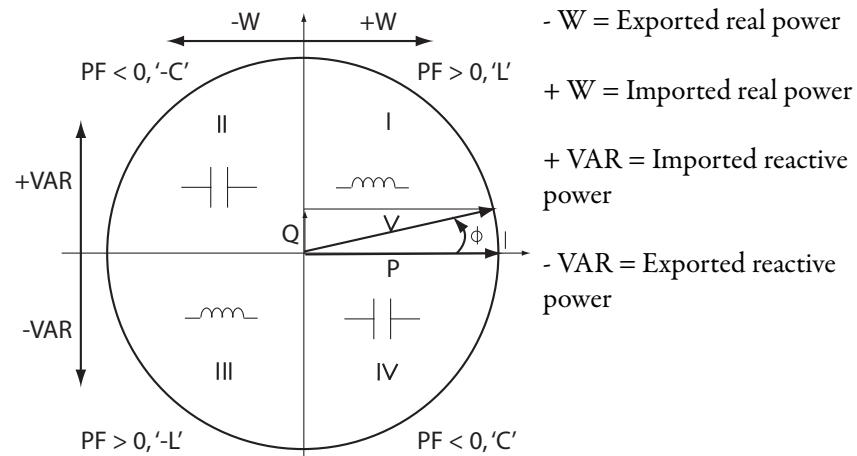
32-bit and 64-bit Data types that are presented as arrays of single registers in LSW (least significant word) to MSW (most significant word) order.

PowerMonitor 500 Unit Data Tables

Summary of Data Tables

The Data Table Summary Index table summarizes all data tables available and their general attributes.

Table 9 - Data Table Summary Index


Name of Data Table	Read	Write	Modbus Starting Address	CIP Assy. Instance ID (decimal)	No. of Elements	See Page
Product Information	X		300001 ⁽¹⁾	100	10	59
Real-time Metering Values (voltage and current)	X		300081	101	12	60
Real-time Metering Values (power, PF, frequency)	X		300105	102	18	61
Maximum Metering Values (voltage and current)	X		300337	103	12	62
Maximum Metering Values (power, PF, frequency)	X		300361	104	17	63
DMD Metering Values (voltage and current)	X		300849	105	12	64
DMD Metering Values (power, PF, frequency)	X		300873	106	17	65
Total and Partial Energy Meters - EtherNet/IP Data Table	X		301281	107	18	66
Configuration - Base Unit: Read and Write	X	X	304097	-	79	67
Configuration - Alarms	X	X	Varies	-	16	68
Configuration - RS-485/RS-232 Communication	X	X	304356	-	17	68
Configuration - Analog Outputs: Read and Write	X	X	304609	-	32	69
Analog Output Configuration Parameters	X	X	Varies	-	16	69
Configuration - Digital Relay Outputs: Read and Write	X	X	304865	-	12	70
Commands: Write-only		X	312369	-	45	71
Alarm and Output Status	X		316385	108	2	73

(1) To obtain the physical address, subtract 300001 from the Modbus address, and convert the result to hexadecimal. Example: Physical address 0x000B corresponds to Modbus address 300012.

Geometric Representation of Power and Power Factor

Power and power factor values are signed values in accordance with EN 62053 and as indicated in the diagram. Inductive or lagging power factor (Quadrant I and III) is indicated by a positive power factor value. Capacitive or leading power factor (Quadrant II and IV) is indicated by a negative power factor value. The PowerMonitor™ 500 unit indicates the quadrant by using +/- L or +/- C as shown in [Figure 26](#).

Figure 26 - Power and Power Factor Diagram

Data Tables

These tables detail each specific data table and its associated elements, such as address, length, description, and format.

IMPORTANT In the data tables, the Σ symbol is used to indicate 3-phase or system values. The context determines whether the symbol indicates average (for example, voltage) or total (for example, power) values.

Product Information

Table 10 - Table Properties

CIP Assembly Instance	100
No. of Elements	10
Length in Words	10
Data Type	UINT
Data Access	Read Only

Table 11 - Product Information Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
1	300001	1	Base firmware revision	UINT	BaseFirmwareRev	MSB: ASCII code for model (A = V2, B = V1) LSB: numeric number for revision
2	300002	1	EtherNet/IP module firmware revision	UINT	CommFirmwareRev	MSB: ASCII code for model LSB: numeric number for revision
3	300003	1	Analog output module firmware revision (if exists)	UINT	AnalogFWRev	MSB: ASCII code for model LSB: numeric number for revision
4	300033	1	Letter 1 (from SX) Letter 2 (from SX)	UINT	Letter1Letter2	MSB: ASCII code LSB: ASCII code
5	300034	1	Letter 3 (from SX) Letter 4 (from SX)	UINT	Letter3Letter4	MSB: ASCII code LSB: ASCII code
6	300035	1	Letter 5 (from SX) Letter 6 (from SX)	UINT	Letter5Letter6	MSB: ASCII code LSB: ASCII code
7	300036	1	Letter 7 (from SX) Letter 8 (from SX)	UINT	Letter7Letter8	MSB: ASCII code LSB: ASCII code
8	300037	1	Letter 9 (from SX) Letter 10 (from SX)	UINT	Letter9Letter10	MSB: ASCII code LSB: ASCII code
9	300038	1	Letter 11 (from SX) Letter 12 (from SX)	UINT	Letter11Letter12	MSB: ASCII code LSB: ASCII code
10	300039	1	Letter 13 (from SX)	UINT	Letter13	MSB: ASCII code

Real-time Metering Values (voltage and current)

Table 12 - Table Properties

CIP Assembly Instance	101
No. of Elements	12
Length in Words	24
Data Type	REAL
Data Access	Read Only

Table 13 - Real-time Metering Values (voltage and current) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300081	2	V L1-N	REAL	L1toNVoltage	
1	300083	2	V L2-N	REAL	L2toNVoltage	
2	300085	2	V L3-N	REAL	L3toNVoltage	
3	300087	2	V L-N Σ	REAL	AvgLNVoltage	
4	300089	2	V L1-L2	REAL	L1toL2Voltage	
5	300091	2	V L2-L3	REAL	L2toL3Voltage	
6	300093	2	V L3-L1	REAL	L3toL1Voltage	
7	300095	2	V L-L Σ	REAL	AvgLLVoltage	
8	300097	2	A L1	REAL	L1Current	
9	300099	2	A L2	REAL	L2Current	
10	300101	2	A L3	REAL	L3Current	
11	300103	2	A N	REAL	NeCurrentCalc	Calculated by instrument base

Real-time Metering Values (power, PF, frequency)

Table 14 - Table Properties

CIP Assembly Instance	102
No. of Elements	18
Length in Words	36
Data Type	REAL
Data Access	Read Only

Table 15 - Real-time Metering Values (power, PF, frequency) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300105	2	W L1	REAL	L1RealPower	
1	300107	2	W L2	REAL	L2RealPower	
2	300109	2	W L3	REAL	L3RealPower	
3	300111	2	W Σ	REAL	TotalRealPower	
4	300113	2	VA L1	REAL	L1ApparentPower	
5	300115	2	VA L2	REAL	L2ApparentPower	
6	300117	2	VA L3	REAL	L3ApparentPower	
7	300119	2	VA Σ	REAL	TotalApparentPwr	
8	300121	2	VAR L1	REAL	L1ReactivePower	
9	300123	2	VAR L2	REAL	L2ReactivePower	
10	300125	2	VAR L3	REAL	L3ReactivePower	
11	300127	2	VAR Σ	REAL	TotalReactivePwr	
12	300129	2	PF L1	REAL	L1PowerFactor	Negative values correspond to lead (C), positive values correspond to lag (L)
13	300131	2	PF L2	REAL	L2PowerFactor	
14	300133	2	PF L3	REAL	L3PowerFactor	
15	300135	2	PF Σ	REAL	TotalPowerFactor	
16	300137	2	Hz	REAL	Frequency	
17	300139	2	Voltage phase sequence	REAL	PhaseSequence	1 = L1-L2-L3 voltage rotation -1 = Not L1-L2-L3 voltage rotation

Maximum Metering Values (voltage and current)

Table 16 - Table Properties

CIP Assembly Instance	103
No. of Elements	12
Length in Words	24
Data Type	REAL
Data Access	Read Only

Table 17 - Maximum Metering Values (voltage and current) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300337	2	Max V L1-N	REAL	MaxL1toNVoltage	
1	300339	2	Max V L2-N	REAL	MaxL2toNVoltage	
2	300341	2	Max V L3-N	REAL	MaxL3toNVoltage	
3	300343	2	Max V L-N Σ	REAL	MaxAvgLNVoltage	
4	300345	2	Max V L1-L2	REAL	MaxL1toL2Voltage	
5	300347	2	Max V L2-L3	REAL	MaxL2toL3Voltage	
6	300349	2	Max V L3-L1	REAL	MaxL3toL1Voltage	
7	300351	2	Max V L-L Σ	REAL	MaxAvgLLVoltage	
8	300353	2	Max A L1	REAL	MaxL1Current	
9	300355	2	Max A L2	REAL	MaxL2Current	
10	300357	2	Max A L3	REAL	MaxL3Current	
11	300359	2	Max A N	REAL	MaxNeCurrentCalc	

Maximum Metering Values (power, PF, frequency)

Table 18 - Table Properties

CIP Assembly Instance	104
No. of Elements	17
Length in Words	34
Data Type	REAL
Data Access	Read Only

Table 19 - Maximum Metering Values (power, PF, frequency) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300361	2	Max W L1	REAL	MaxL1RealPower	
1	300363	2	Max W L2	REAL	MaxL2RealPower	
2	300365	2	Max W L3	REAL	MaxL3RealPower	
3	300367	2	Max W Σ 3	REAL	MaxTotalRealPwr	
4	300369	2	Max VA L1	REAL	MaxL1ApparentPwr	
5	300371	2	Max VA L2	REAL	MaxL2ApparentPwr	
6	300373	2	Max VA L3	REAL	MaxL3ApparentPwr	
7	300375	2	Max VA Σ	REAL	MaxTotalVA	
8	300377	2	Max VAR L1	REAL	MaxL1ReactivePwr	Negative values correspond to lead (C), positive values correspond to lag (L)
9	300379	2	Max VAR L2	REAL	MaxL2ReactivePwr	
10	300381	2	Max VAR L3	REAL	MaxL3ReactivePwr	
11	300383	2	Max VAR Σ	REAL	MaxTotalVAR	
12	300385	2	Max PF L1	REAL	MaxL1PowerFactor	The Max PF displayed corresponds to the PF value with the largest phase angle.
13	300387	2	Max PF L2	REAL	MaxL2PowerFactor	
14	300389	2	Max PF L3	REAL	MaxL3PowerFactor	
15	300391	2	Max PF Σ	REAL	MaxTotalPF	
16	300393	2	Max Hz	REAL	MaxFrequency	

DMD Metering Values (voltage and current)

Table 20 - Table Properties

CIP Assembly Instance	105
No. of Elements	12
Length in Words	24
Data Type	REAL
Data Access	Read Only

Table 21 - DMD Metering Values (voltage and current) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300849	2	DMD V L1-N	REAL	DmdL1toNVoltage	
1	300851	2	DMD V L2-N	REAL	DmdL2toNVoltage	
2	300853	2	DMD V L3-N	REAL	DmdL3toNVoltage	
3	300855	2	DMD V L-N Σ	REAL	DmdAvgLNVoltage	
4	300857	2	DMD V L1-L2	REAL	DmdL1toL2Voltage	
5	300859	2	DMD V L2-L3	REAL	DmdL2toL3Voltage	
6	300861	2	DMD V L3-L1	REAL	DmdL3toL1Voltage	
7	300863	2	DMD V L-L Σ	REAL	DmdAvgLLVoltage	
8	300865	2	DMD A L1	REAL	DmdL1Current	
9	300867	2	DMD A L2	REAL	DmdL2Current	
10	300869	2	DMD A L3	REAL	DmdL3Current	
11	300871	2	DMD A N	REAL	DmdNeCurrentCalc	

DMD Metering Values (power, PF, frequency)

Table 22 - Table Properties

CIP Assembly Instance	106
No. of Elements	17
Length in Words	34
Data Type	REAL
Data Access	Read Only

Table 23 - DMD Metering Values (power, PF, frequency) Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	300873	2	DMD W L1	REAL	Dmdl1RealPower	
1	300875	2	DMD W L2	REAL	Dmdl2RealPower	
2	300877	2	DMD W L3	REAL	Dmdl3RealPower	
3	300879	2	DMD W Σ	REAL	DmdTotalRealPwr	
4	300881	2	DMD VA L1	REAL	Dmdl1ApparentPwr	
5	300883	2	DMD VA L2	REAL	Dmdl2ApparentPwr	
6	300885	2	DMD VA L3	REAL	Dmdl3ApparentPwr	
7	300887	2	DMD VA Σ	REAL	DmdTotalVA	
8	300889	2	DMD VAR L1	REAL	Dmdl1ReactivePwr	Negative values correspond to lead (C), positive values correspond to lag (L)
9	300891	2	DMD VAR L2	REAL	Dmdl2ReactivePwr	
10	300893	2	DMD VAR L3	REAL	Dmdl3ReactivePwr	
11	300895	2	DMD VAR Σ	REAL	DmdTotalVAR	
12	300897	2	DMD PF L1	REAL	Dmdl1PowerFactor	
13	300899	2	DMD PF L2	REAL	Dmdl2PowerFactor	
14	300901	2	DMD PF L3	REAL	Dmdl3PowerFactor	
15	300903	2	DMD PF Σ	REAL	DmdTotalPF	
16	300905	2	DMD Hz	REAL	DmdFrequency	

Total and Partial Energy Meters - EtherNet/IP Data Table

Table 24 - Table Properties

CIP Assembly Instance	107
No. of Elements	18
Length in Words	36
Data Type	REAL
Data Access	Read Only

Table 25 - Total and Partial Energy Meters - EtherNet/IP Data Table

Element	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	2	Total kWh+	REAL	kWhConsumed	Range 0.0 ... 999,999.999
1	2	Total GWh+	REAL	GWhConsumed	Range 0 ... 9,999,999
2	2	Total kVARh+	REAL	kVARhConsumed	Range 0.0 ... 999,999.999
3	2	Total GVARh+	REAL	GVARhConsumed	Range 0 ... 9,999,999
4	2	Total kWh-	REAL	kWhGenerated	Range 0.0 ... 999,999.999
5	2	Total GWh-	REAL	GWhGenerated	Range 0 ... 9,999,999
6	2	Total kVARh-	REAL	kVARhGenerated	Range 0.0 ... 999,999.999
7	2	Total GVARh-	REAL	GVARhGenerated	Range 0 ... 9,999,999
8	2	Partial kWh+	REAL	PartialKWhCon	Range 0.0 ... 999,999.999
9	2	Partial GWh+	REAL	PartialGWhCon	Range 0 ... 9,999,999
10	2	Partial kVARh+	REAL	PartialKVARhCon	Range 0.0 ... 999,999.999
11	2	Partial GVARh+	REAL	PartialGVARhCon	Range 0 ... 9,999,999
12	2	Partial kWh-	REAL	PartialKWhGen	Range 0.0 ... 999,999.999
13	2	Partial GWh-	REAL	PartialGWhGen	Range 0 ... 9,999,999
14	2	Partial kVARh-	REAL	PartialKVARhGen	Range 0.0 ... 999,999.999
15	2	Partial GVARh-	REAL	PartialGVARhGen	Range 0 ... 9,999,999
16	2	Hours counter	REAL	HrsCounter	
17	2	Minutes counter	REAL	MinCounter	Range 0 ... 59

Table 26 - Energy Metering Values Modbus - Read-only

Modbus Address	Length (words)	Description / Units	Data Format	Notes
301281	4	Total kWh+	ULINT	Values in Wh or varh
301285	4	Total kVARh+	ULINT	
301289	4	Total kWh-	ULINT	
301293	4	Total kVARh-	ULINT	
301297	4	Partial kWh+	ULINT	
301301	4	Partial kVARh+	ULINT	
301305	4	Partial kWh-	ULINT	
301309	4	Partial kVARh-	ULINT	
301313	4	Hours counter	ULINT	Hours value: Integer part got from the division of the counter by 100-Minutes value: rest of the previous computation (decimal part)

Table 27 - Configuration - Base Unit: Read and Write

Modbus Address	Length (words)	Description / Units	Data Format	Notes
304097	1	Password	UINT	Minimum valid value: 0d Maximum valid value: 9999d
304098	1	Electrical system selection	UINT	Value = 0: 1P (1-phase 2-wire) Value = 1: 2P (2-phase 3-wire) Value = 2: 3P (3-phase 3-wire) Value = 3: 3P2 (3-phase 2-wire) one current and 1-phase (L1) to neutral voltage measurement Value = 4: 3P1 (3-phase 4-wire one current and 3-phase to neutral voltage measurements) Value = 5: 3PN (default =3PN)
304099	1	Reserved	UINT	
304101	1	Backlight mode	UINT	The timing backlight is programmable from 0...255 minutes (0 = always ON)
304107	1	DMD - Calculation	UINT	Selection of the DMD calculation mode Value=0: Fixed Value=1: Slide - only for $W\sum$ and $VA\sum$
304108	1	DMD - Time interval	UINT	Value=0: 1 min Value=1: 5 min Value=2: 10 min Value=3: 15 min Value=4: 20 min Value=5: 30 min Value=6: 60 min
304109	1	DMD - Synchronization	UINT	Synchronization selection mode Value=0: OFF Value=1: Clock
304121	2	CT - Current transformer ratio	REAL	1.0...9999.0
304123	2	VT(PT) - Voltage transformer ratio	REAL	1.0...9999.0
304127	2	Filter Span parameter	REAL	Value min = 0.0 Value max = 100.0 (Disabled = 0.0)
304129	2	Filter Coefficient	REAL	Value min = 1.0 Value max = 256.0
304177	16	Virtual Alarm AL1 (LED 1)	Customized	See the Table 28
304193	16	Virtual Alarm AL2 (LED 2)	Base Alarm data structure	
304209	16	Virtual Alarm AL3 (LED 3)		
304225	16	Virtual Alarm AL4 (LED 4)		

Table 28 - Configuration - Alarms

Modbus Address	Length (words)	Description / Units	Data Format	Notes
Block address +0	1	Alarm N - Enabling	UINT	Value=1: alarm N enabled Value=0: alarm N disabled All other values are considered as value=0
Block address +1	1	Alarm N - Variable type to be linked to	UINT	See the Connected Variable List (Table 36)
Block address +2	1	Alarm N - Delay ON activation (s)	UINT	Value min=0 Value max=3600 If the set value exceeds the allowed range, the instrument automatically sets the value to 0
Block address +3	2	Alarm N – Set point 1	REAL	Value min = -9999M Value max = 9999M If the set value exceeds the allowed range, the instrument automatically sets the value to 0.000
Block address +5	2	Alarm N – Set point 2	REAL	Value min = -9999M Value max = 9999M If the set value exceeds the allowed range, the instrument automatically sets the value to 0.000
Block address +7	9	Reserved		

Table 29 - Configuration - RS-485/RS-232 Communication

Modbus Address	Length (words)	Description / Units	Data Format	Notes
304356	1	Clock format	UINT	0=24h/12h 1=AM-PM
304357	1	Clock daylight-saving	UINT	Value=0: NO Value=1: YES
304358	1	Clock calendar: Year ⁽¹⁾	UINT	2009...2099
304359	1	Clock calendar: Month ⁽¹⁾	UINT	1...12
304360	1	Clock calendar: Day ⁽¹⁾	UINT	1...31
304361	1	Clock: Hour ⁽¹⁾	UINT	0...23
304362	1	Clock: Minutes ⁽¹⁾	UINT	0...59
304363	1	Clock: Seconds ⁽¹⁾	UINT	0...59
304364	1	Daylight-saving: month in which to increase the hour (+1H)	UINT	1...12
304365	1	Daylight-saving: Sunday in which to increase the hour (+1H)	UINT	0...4 (0= last Sunday of the month)
304366	1	Daylight-saving: hour in which to increase the hour (+1H)	UINT	0...23 (24h format only)
304367	1	Daylight-saving: month in which to decrease the hour (-1H)	UINT	1...12
304368	1	Daylight-saving: Sunday in which to decrease the hour (-1H)	UINT	0...4 (0= last Sunday of the month)
304369	1	Daylight-saving: hour in which to decrease the hour (-1H)	UINT	0...23 (24h format only)
304401	1	RS-485 instrument address selection ⁽²⁾	UINT	Value min = 1 Value max = 247 If the set value exceeds the allowed range, the instrument automatically sets the value to 1
304402	1	RS-485 baud rate selection ⁽²⁾	UINT	Value=0: 9600 Value=1: 19200 Value=2: 38400 Value=3: 115200 All other values are considered as value=0
304403	1	RS-485 parity selection ⁽²⁾	UINT	Value=0: No parity Value=1: Odd parity Value=2: Even parity All other values are considered as value=0

(1) The values are updated only after sending the 'update clock' command.

(2) The values are updated only after sending the 'update serial communication setting' command or switching off and on the instrument.

Table 30 - Configuration - Analog Outputs: Read and Write

Modbus Address	Length (words)	Description / Units	Data Format	Notes
304609	16	Analog output A0: parameters configuration	CUSTOM	See Table 31
304625	16	Analog output A1: parameters configuration	CUSTOM	

Table 31 - Analog Output Configuration Parameters

Modbus Address	Length (words)	Description / Units	Data Format	Notes
Block address +0	1	Type of the variable that is linked to the N analog output	UINT	
Block address +1	2	Minimum electric value of the N analog output	REAL	Value min = 0 Value max = 9,999,000
Block address +3	2	Maximum electric value of the N analog output	REAL	
Block address +5	2	Minimum output value of the N analog output	REAL	Value min = 0.0 Value max = 100.0
Block address +7	2	Maximum output value of the N analog output	REAL	
Block address +9	7	Reserved		

Table 32 - Configuration - Digital Relay Outputs: Read and Write

Modbus Address	Length (words)	Description / Units	Data Format	Notes
304865	1	Digital output channel 1: enabling	UINT	0=Remote 1=Alarm 2=Pulse
304866	1	Digital output channel 1: output working mode	UINT	0=NO 1=NC (only if selected 'Alarm' type)
304867	1	Digital output channel 1: linked alarm	UINT	0=AL1 1=AL2 2=AL3 3=AL4 (only if selected 'Alarm' type)
304868	1	Channel 1: linked counter-variable	UINT	0=Total kWh+ 1=Total kVARh+ 2=Total kWh- 3=Total kVARh- 4=Partial kWh+ 5=Partial kVARh+ 6=Partial kWh- 7=Partial kVARh-
304869	2	Digital output channel 1: pulse	REAL	Pulse weight (kWh/pulse or kVARh/pulse) Value min = 0.001 Value max = 9999.9
304871	1	Digital output channel 2: enabling	UINT	0=Remote 1=Alarm 2=Pulse
304872	1	Digital output channel 2: output working mode	UINT	0=NO 1=NC (only if selected 'Alarm' type)
304873	1	Digital output channel 2: linked alarm	UINT	0=AL1 1=AL2 2=AL3 3=AL4 (only if selected 'Alarm' type)
304874	1	Channel 2: linked counter-variable	UINT	0=Total kWh+ 1=Total kVARh+ 2=Total kWh- 3=Total kVARh- 4=Partial kWh+ 5=Partial kVARh+ 6=Partial kWh- 7=Partial kVARh-
304875	2	Digital output channel 2: pulse	REAL	Pulse weight (kWh/pulse or kVARh/pulse) Value min = 0.001 Value max = 9999.0

Table 33 - Commands: Write-only

Modbus Address	Length (words)	Description / Units	Data Format	Notes
312369	1	Get clock values	UINT	Value=1 - command executed; Value≠1 - no effect
312370	1	Set clock values	UINT	Value=1 - date and time set
312373	1	Enable optional pulse (digital) outputs	UINT	Value=1 - module enabled; Value=0 - module disabled
312375	1	Enable optional serial communication	UINT	Value=1 - module enabled; Value=0 - module disabled
312545	1	Reset all pulse (digital) outputs (digital output 1 or 2)	UINT	Value=1 - command executed; Value≠1 - no effect
312546	1	Set pulse (digital) output 1	UINT	Value=0 - reset output; Value=1 - set output; Other values - no effect
312547	1	Set pulse (digital) output 2	UINT	Value=0 - reset output; Value=1 - set output; Other values - no effect
312548	1	Set all pulse (digital) outputs (digital output 1 or 2)	UINT	Value=1 - command executed; Value≠1 - no effect
312801	1	Reset V L1-N	UINT 16	Bit0 = 1: Reset Max Value Bit1 = 1: Reset DMD value Bits 2 . . . 15: Reserved
312802	1	Reset V L2-N	UINT 16	
312803	1	Reset V L3-N	UINT 16	
312804	1	Reset V L-N Σ	UINT 16	
312805	1	Reset V L1-L2	UINT 16	
312806	1	Reset V L2-L3	UINT 16	
312807	1	Reset V L3-L1	UINT 16	
312808	1	Reset V L-L Σ	UINT 16	
312809	1	Reset A L1	UINT 16	
312810	1	Reset A L2	UINT 16	
312811	1	Reset A L3	UINT 16	
312812	1	Reset A N	UINT 16	

Table 33 - Commands: Write-only

Modbus Address	Length (words)	Description / Units	Data Format	Notes
312814	1	Reset W L1	UINT 16	
312815	1	Reset W L2	UINT 16	
312816	1	Reset W L3	UINT 16	
312817	1	Reset W Σ	UINT 16	
312818	1	Reset VA L1	UINT 16	
312819	1	Reset VA L2	UINT 16	
312820	1	Reset VA L3	UINT 16	
312821	1	Reset VA Σ	UINT 16	
312822	1	Reset VAR L1	UINT 16	
312823	1	Reset VAR L2	UINT 16	
312824	1	Reset VAR L3	UINT 16	
312825	1	Reset VAR Σ	UINT 16	
312826	1	Reset PF L1	UINT 16	
312827	1	Reset PF L2	UINT 16	
312828	1	Reset PF L3	UINT 16	
312829	1	Reset PF Σ	UINT 16	
312830	1	Reset Hz	UINT 16	
313569	1	Reset Total kWh+	UINT	Value=1 - command executed
313570	1	Reset Total kVARh+	UINT	Value=1 - command executed
313571	1	Reset Total kWh-	UINT	Value=1 - command executed
313572	1	Reset Total kVARh-	UINT	Value=1 - command executed
313573	1	Reset Partial kWh+	UINT 16	Value=1 - command executed
313574	1	Reset Partial kVARh+	UINT 16	Value=1 - command executed
313575	1	Reset Partial kWh-	UINT 16	Value=1 - command executed
313576	1	Reset Partial kVARh-	UINT 16	Value=1 - command executed
313577	1	Reset Run Hours	UINT 16	Value=1 - command executed

Alarm and Output Status

Table 34 - Table Properties

CIP Assembly Instance	108
No. of Elements	2
Length in Words	2
Data Type	INT
Data Access	Read Only

Table 35 - Alarm and Output Status: read-only Mode Data Table

Element	Modbus Address	Length (words)	Description / Units	Data Format	Tag Name	Notes
0	316385	1	Virtual alarm	UINT	VirtualAlarm	Bit value: 0 = OFF Bit value: 1 = ON Bit position: 0: Virtual alarm 1 1: Virtual alarm 2 2: Virtual alarm 3 3: Virtual alarm 4
1	316386	1	Output (port)	UINT	OutputPort	Bit value 0 = OFF Bit value 1 = ON (Important: only if the port is not linked to the counter) Bit position (LSB concept): 0: Port1 1: Port2
2 (see Important)	316387	1	HW modules configuration	UINT		Bit value: 0 = module not present 1 = module present Bit position 0: Relay output 1: Reserved 2: RS-485/RS-232 port 3: Ethernet Modbus 4: Reserved 5: Analog output 6: Reserved 7: Reserved 8: EtherNet/IP 9...15: Reserved

IMPORTANT A Get_Attribute_Single command returns only elements 0 and 1 of this table. The information in element 2 is accessible in the Identity Object, Class 0x01.

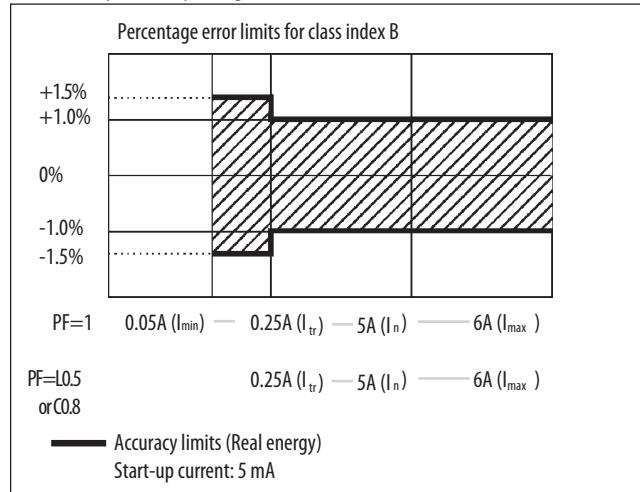
List of Connectable Variables

The variables that are listed in [Table 36](#) can be connected to the Alarms and Analog outputs. The energy variables listed in [Table 37](#) can be connected to the Pulse (digital relay) Outputs.

(X) = available; (O) = not available (variable not available on the display);
 (#) Not available (the relevant page is not displayed); (1) Max value with data storage

Table 36 - Variables for Alarms and Analog Output

No	Variable	1-ph. Sys (1P)	2-ph. Sys (2P)	3-ph. 3/4-wire Balanced Sys (3P,1)	3-ph. 2-wire Balanced Sys (3P,2)	3-ph. 3-wire Unbal. Sys (3P)	3-ph. 4-wire Unbal. Sys (3P,n)	Notes
0	VL1-N	X	X	X	X	#	X	(1)
1	VL2-N	0	X	X	X	#	X	(1)
2	VL3-N	0	0	X	X	#	X	(1)
3	VL-N sys	0	X	X	X	#	X	sys= system= \sum (1)
4	VL1-2	#	X	X	X	X	X	(1)
5	VL2-3	#	0	X	X	X	X	(1)
6	VL3-1	#	0	X	X	X	X	(1)
7	VL-L sys	0	X	X	X	X	X	sys= system= \sum (1)
8	AL1	X	X	X	X	X	X	(1)
9	AL2	0	X	X	X	X	X	(1)
10	AL3	0	0	X	X	X	X	(1)
11	AN							
12	WL1	X	X	X	X	#	X	(1)
13	WL2	0	X	X	X	#	X	(1)
14	WL3	0	0	X	X	#	X	(1)
15	W Total	X	X	X	X	X	X	sys= system= \sum (1)
16	VA L1	X	X	X	X	#	X	(1)
17	VA L2	0	X	X	X	#	X	(1)
18	VA L3	0	0	X	X	#	X	(1)
19	VA Total	X	X	X	X	X	X	sys= system= \sum (1)
20	VAR L1	X	X	X	X	#	X	(1)
21	VAR L2	0	X	X	X	#	X	(1)
22	VAR L3	0	0	X	X	#	X	(1)
23	VAR Total	X	X	X	X	X	X	sys= system= \sum (1)
24	PFL1	X	X	X	X	#	X	(1)
25	PFL2	0	X	X	X	#	X	(1)
26	PFL3	0	0	X	X	#	X	(1)
27	PF sys	X	X	X	X	X	X	sys= system= \sum (1)
28	Hz	X	X	X	X	X	X	(1)
29	Phase seq.	0	X	X	X	X	X	


Table 37 - Variables for Pulse (digital) Output

No	Variable ⁽¹⁾	1-ph. Sys (1P)	2-ph. Sys (2P)	3-ph. 3/4-wire Balanced Sys (3P.1)	3-ph. 2-wire Balanced Sys (3P.2)	3-ph. 3-wire Unbal. Sys (3P)	3-ph. 4-wire Unbal. Sys (3P.n)
0	Total kWh (+)	X	X	X	X	X	X
1	Total kVARh (+)	X	X	X	X	#	X
2	Total kWh (-)	X	X	X	X	X	X
3	Total kVARh (-)	X	X	X	X	#	X
4	Partial kWh (+)	X	X	X	X	X	X
5	Partial kVARh (+)	X	X	X	X	#	X
6	Partial kWh (-)	X	X	X	X	X	X
7	Partial kVARh (-)	X	X	X	X	#	X

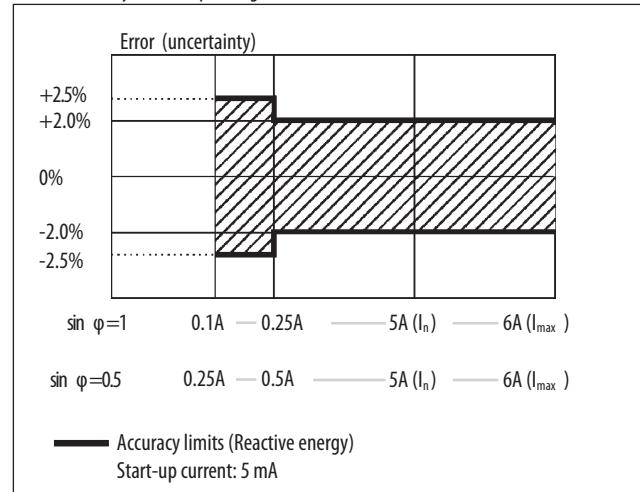

(1) A (+) indicates consumed and a (-) indicates generated.

Figure 27 - Accuracy

kWh, Accuracy (RDG) Depending on the Current

kVARh, Accuracy (RDG) Depending on the Current

Figure 28 - Calculation Formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_i^n (V_{1N})_i^2}$$

Instantaneous real power

$$W_1 = \frac{1}{n} \cdot \sum_i^n (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$\cos\varphi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{n} \cdot \sum_i^n (A_1)_i^2}$$

Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$\text{var}_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$$

Three-phase reactive power

$$\text{var}_{\Sigma} = (\text{var}_1 + \text{var}_2 + \text{var}_3)$$

Three-phase real power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \text{var}_{\Sigma}^2}$$

Three-phase power factor

$$\cos\varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}} \quad (\text{TPF})$$

Energy metering

$$k \text{ var} hi = \int_{t_1}^{t_2} Q_i(t) dt \cong \Delta t \sum_{n1}^{n2} Q_{nj}$$

$$kWhi = \int_{t_1}^{t_2} P_i(t) dt \cong \Delta t \sum_{n1}^{n2} P_{nj}$$

Where:

i = considered phase (L1, L2 or L3)
P = real power; Q = reactive power;
t₁, t₂ = starting and ending time points of consumption recording; n = time unit; Δ t = time interval between two successive power consumptions;
n₁, n₂ = starting and ending discrete time points of consumption recording

Technical Specifications

Table 38 - Input Specifications

Attribute	Value
Rated inputs	System type: 1, 2, or 3-phase
Current type	Galvanic insulation with built-in CTs
Current range (by CT)	5 A nom (6 A max)
Voltage (by direct connection or VT/PT)	V1: 120/208V LL; V2: 400/600V LL
Accuracy (Display and RS-485) (at 25 °C ± 5 °C, R.H. ≤ 60%, 48...62 Hz)	Current, nom (I_{nom}): 5 A Voltage, nom (V_{nom}): V1: 120V AC LN, 208V AC LL; V2: 400V AC LN, 600V AC LL
V1 model	I_{nom} : 5 A, I_{max} : 6 A Line-neutral RMS: 40...144V AC Line-Line RMS: 70...250V AC
V2 model	I_{nom} : 5 A, I_{max} : 6 A Line-neutral RMS: 160...480V AC Line-line RMS: 277...830V AC
Current all models	From 0.01...0.25 A: ±(1.0% of reading (RDG) + 2 digits) From 0.25...6 A: ±(0.5% RDG +2 digits)
Line-neutral voltage	In the range V_{nom} : ±(0.5% RDG +1 digit)
Line-line voltage	In the range V_{nom} : ±(1.0% RDG +1 digit)
Frequency	±0.1 Hz (45...65 Hz)
Real and apparent power	From 0.05... 0.25 A, PF 1: ±(2% RDG +1 digit) From 0.25...6A, PF 0.5L, PF1, PF 0.8C: ±(1.0% RDG+1 digit)
Power factor (PF)	±[0.001+0.5% (1.000 - 'PF RDG')]
Reactive power	From 0.5... 6 A, $\sin\phi$ 0.5L/C: ±(2.0% RDG +1 digit) From 0.25... 0.5 A, $\sin\phi$ 0.5L/C: ±(2.5% RDG +1 digit) From 0.25...6 A, $\sin\phi$ 1.0: ±(2.0% RDG+1 digit) From 0.1... 0.25 A, $\sin\phi$ 1: ±(2.5% RDG+1 digit) TIP: $\sin\phi$ = VAR/VA
Real energy	Class 1 according to EN62053-21, ANSI C12.1 Class B according to EN50470-3
Reactive energy	Class 2 according to EN62053-23, ANSI C12.1
Start up current	5 mA
Energy additional errors	According to EN62053-21 ANSI C12.1, Influence quantities Class B according to EN50470-3, EN62053-23
Temperature drift	≤ 200 ppm/°C
Sampling rate	3840 samples/second at 60 Hz, 3200 samples/second at 50 Hz
Measurements	See List of Connectable Variables on page 74
Method	True RMS measurements of distorted wave forms
Coupling type	With CTs
Crest factor	≤3 (15 A max peak)

Table 38 - Input Specifications (Continued)

Attribute	Value
Current overloads	
Continuous	6 A, at 50/60 Hz
For 500 ms	120 A, at 50/60 Hz
Voltage overloads	
Continuous	$1.2 \times V_{\text{nom}}$ (where V_{nom} is the nominal voltage of the module)
For 500 ms	$2 \times V_{\text{nom}}$ (where V_{nom} is the nominal voltage of the module)
Input impedance	
400VL-L (V2)	> 1.6 MΩ
208VL-L (V1)	> 1.6 MΩ
5(6)A	< 0.2VA
Frequency	40...440 Hz

Table 39 - Pulse (digital) Output Specifications (P option)

Attribute	Value
Physical outputs	2
Purpose	For either alarm output or digital output
Type	Relay, SPDT type: <ul style="list-style-type: none"> AC 1 - 5 A at 250V AC AC 15 - 1 A at 250V AC DC 12 - 5 A at 24V DC DC 13 - 1.5 A at 24V DC
Configuration	Use the front keypad
Function	The outputs can work as alarm outputs but also as digital outputs, communication controlled outputs, or in any other combination
Alarms	Up alarm and down alarm that is linked to the virtual alarms, for other details, see Virtual alarms in Table 44
Response time, min	≤ 200 ms, filters excluded. Set-point on-time delay: '0 s'
Pulse	
Signal retransmission	Total: +kWh, -kWh, +kVARh, -kVARh. Partial: +kWh, -kWh, +kVARh, -kVARh
Pulse type	The listed variables can be connected to any output
Pulse weight	Programmable from 0.001...9999 kWh or kVARh per pulse
Pulse duration	$100 \text{ ms} \leq \text{ON-state} < 120 \text{ ms}$; $\text{OFF-state} \geq 120 \text{ ms}$; According to EN62053-31
Communication controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See Table 47 Isolation Between Inputs and Outputs (1 minute)

Table 40 - Analog Output Specifications (A option)

Attribute	Value
Number of outputs	2
Accuracy (at $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, R.H. $\leq 60\%$)	$\pm 0.2\%$ of full scale
Range	0...20 mA
Configuration	By using the front keypad
Signal retransmission	The signal output can be connected to any instantaneous variable. See List of Connectable Variables on page 74
Scaling factor	Programmable within the whole range of retransmission; it allows the retransmission management of all values from 0...20 mA DC
Response time	≤ 400 ms typical (filter excluded)
Ripple	$\leq 1\%$ (according to IEC 60688-1, EN 60688-1)
Total temperature drift	≤ 500 ppm/ $^{\circ}\text{C}$
Load	$\leq 600 \Omega$
Insulation	See Table 47 Isolation Between Inputs and Outputs (1 minute)

Table 41 - Serial RS-485/RS-232 Communication Specifications (485 option)

Attribute	Value
RS-485/RS-422 port	
Type	Multidrop, bidirectional (static and dynamic variables)
Connections 2-wire Max distance 1000 m, termination directly on the module	
Addresses	247, selectable by using the front key-pad or through the software
Protocol	Modbus RTU
Data (bidirectional)	
Dynamic (reading only)	System and phase variables: see the Modbus register maps in Appendix A
Static (reading and writing only)	All configuration parameters; see the Modbus register maps in Appendix A
Data format	One start bit, eight data bit, no/even/odd parity, 1 stop bit
Communication rate	Selectable: 9.6, 19.2, 38.4, 115.2 Kbps
Driver input capability	1/5 unit load. Max 160 transceivers on the same bus
Insulation	See Table 47 Isolation Between Inputs and Outputs (1 minute)
RS-232 port	
Type	Bidirectional (static and dynamic variables)
Connections	Three wires. Max distance 15 m
Protocol	Modbus RTU

Table 41 - Serial RS-485/RS-232 Communication Specifications (485 option) (Continued)

Attribute	Value
Data (bidirectional)	
Dynamic (reading only)	System and phase variables; see the Modbus register tables in Appendix A
Static (reading and writing only)	All configuration parameters; see the Modbus register tables in Appendix A
Data format	One start bit, eight data bit, no/even/odd parity, 1 stop bit
Communication rate	Selectable: 9.6, 19.2, 38.4, 115.2 Kbps
Note	With the rotary switch (on the back of the basic unit) in lock position, modification of programming parameters and reset command with serial communication are not allowed. In this case, just the data reading is allowed
Insulation	See Table 47 Isolation Between Inputs and Outputs (1 minute)

Table 42 - Energy Meters

Attribute	Value
Meters	
Total	4 (9+1 digit)
Partial	4 (9+1 digit)
Pulse output	Connectable to total and/or partial meters
Energy meter recording	Storage of total and partial energy meters. Energy meter storage format (EEPROM) Min. -9,999,999,999.9 kWh/kVARh Max. 9,999,999,999.9 kWh/kVARh
Energy meters	
Total energy meters	+kWh, +kVARh, -kWh, -kVARh
Partial energy meters	+kWh, +kVARh, -kWh, -kVARh

Table 43 - Display, Status Indicators, and Commands

Attribute	Value
Display refresh time	≤ 100 ms
Display	Four Rows of display each with a max of four digits, 1 Row of display with a max of 10 digits
Type	LCD, single color backlight
Digit dimensions	Four digits: h 9.5 mm; 10 digits: h 6.0 mm
Instantaneous variables read-out	Four digits
Energy variables read-out	Imported Total/Partial: 9+1 digit or 10 digits; Exported Total/Partial: 9+1 digit or 10 digits (with '-' sign)
Run hours counter	8+2 digits (99,999,999 hours and 59 minutes max)
Overload status	EEEE indication when the value being measured is exceeding the 'Continuous inputs overload' (max measurement capacity)
Max and min indication	Max instantaneous variables: 9999; energies: 999,999,999.9 or 9,999,999,999 Min instantaneous variables: 0.000; energies 0.0

Table 43 - Display, Status Indicators, and Commands (Continued)

Attribute	Value														
Front-position Status Indicators															
Virtual alarms	Four red status indicators available in case of virtual alarm (AL1-AL2- AL3-AL4). The real alarm is just the activation of the proper static or relay output if the proper module is available														
kWh consumption (red LED pulsating status indicator)	<p>Depending on the configured CT ratio and PT ratio, the kWh status indicator flashes to indicate the amount of kWh consumed as shown:</p> <table border="1"> <thead> <tr> <th>Condition</th><th>kWh Consumed</th></tr> </thead> <tbody> <tr> <td>$(CT \text{ ratio} * PT \text{ ratio}) \leq 7$</td><td>0.001</td></tr> <tr> <td>$7.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.0$</td><td>0.01</td></tr> <tr> <td>$70.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 700.0$</td><td>0.1</td></tr> <tr> <td>$700.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 7000$</td><td>1</td></tr> <tr> <td>$7001 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.00k$</td><td>10</td></tr> <tr> <td>$(CT \text{ ratio} * PT \text{ ratio}) > 70.01k$</td><td>100</td></tr> </tbody> </table> <p>For example, if the configured CT ratio is 60 and the PT ratio is 1, then $60*1 = 60$, which falls into the condition between 7.1 and 70.0. In this example, the kWh LED status indicator flashes every 0.01 kWh. This feature is on all PowerMonitor 500 units and does not require the digital pulse outputs. Max frequency: 16 Hz, according to EN62052-11.</p>	Condition	kWh Consumed	$(CT \text{ ratio} * PT \text{ ratio}) \leq 7$	0.001	$7.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.0$	0.01	$70.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 700.0$	0.1	$700.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 7000$	1	$7001 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.00k$	10	$(CT \text{ ratio} * PT \text{ ratio}) > 70.01k$	100
Condition	kWh Consumed														
$(CT \text{ ratio} * PT \text{ ratio}) \leq 7$	0.001														
$7.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.0$	0.01														
$70.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 700.0$	0.1														
$700.1 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 7000$	1														
$7001 \geq (CT \text{ ratio} * PT \text{ ratio}) \leq 70.00k$	10														
$(CT \text{ ratio} * PT \text{ ratio}) > 70.01k$	100														
Rear-position Status Indicators															
On the base	Green as power-on														
On communication modules	Two status indicators: one for TX (green) and one for RX (amber) Flashing green and amber: indicates proper communication wiring On -485 units, Green status indicator off and amber status indicator on: can indicate improper wiring (the wiring for A- and B+ is reversed)														
Keypad	For variable selection, programming of the instrument working parameters, 'dmd', 'max', total energy, and partial energy Reset														

Table 44 - Main Functions

Attribute	Value
Password	Numeric code of max four digits; two protection levels of the programming data
1st level	Password '0', no protection
2nd level	Password from 1...9999, all data are protected
System selection	
System 3P.n unbalanced load	3-phase (4-wire Wye)
System 3P unbalanced load	3-phase (3-wire) Delta Three currents and three line-to-line voltage measurements For ARON connection, two currents (with special wiring on screw terminals) and three line-to-line voltage measurements.
System 3P.1 balanced load	3-phase (3-wire), one current and three line-to-line measurements. 3-phase (4-wire), one current and three line-to-neutral voltage measurements.
System 3P.2 balanced load	3-phase (2-wire), one current and one line-to-neutral (L1) voltage measurement
System 2P	2-phase (3-wire) Split-phase
System 1P	1-phase (2-wire) Single phase
Transformer ratio	
VT (PT)	1.0...999.9 / 1000...9999
CT	1.0...999.9 / 1000...9999 (up to 50 kA in case of CT with 5 A secondary current)

Table 44 - Main Functions (Continued)

Attribute	Value
Filter	
Operating range	Selectable from 0...100% of the input display scale
Filtering coefficient	Selectable from 1...256
Filter action	Measurements, analog signal retransmission, serial communication (fundamental variables: V, A, W, and their derived ones)
Displaying	
Number of variables	Up to five variables per page. See Front Panel Features on page 9 . Seven different set of variables available according to the application being selected. See Display Features on page 11
Backlight	The backlight time is programmable from 0 (always on) to 255 minutes
Virtual alarms	
Working condition	Basic unit (indication only) or with (P) optional digital output modules
No. of alarms	Up to 4
Working mode	Up alarm and down alarm
Controlled variables	The alarms can be connected to any instantaneous variable. See List of Connectable Variables on page 74
Set-point adjustment	From 0...100% of the display scale
Hysteresis From	0 to full scale
On-time delay	0...9999 s
Response time, min	≤ 200 ms, filters excluded. Set-point on-time delay: '0 s'
Reset	By using the front keypad. It is possible to reset the following data: <ul style="list-style-type: none"> • All max and dmd values • Total energy (kWh, kVARh) • Partial energy (kWh, kVARh)
Clock	
Functions	Universal clock and calendar
Time format	Hour: minutes: seconds with selectable 24 hours or AM/PM format
Date format	Day-month-year with selectable DD-MM-YY or MM-DD-YY format
Battery life	Ten years
Easy connection function	For all display selections, both energy and power measurements are independent from the current direction. The displayed energy is always 'imported'

Table 45 - General Specifications

Attribute	Value
Temperature, operating	-25...40 °C (-13...104 °F) (R.H. from 0...90% noncondensing at 40 °C) according to EN62053-21, EN50470-1 and EN62053-23
Temperature, storage	-30...70 °C (-22...158 °F) (R.H. < 90% noncondensing @ 40 °C) according to EN62053-21, EN50470-1 and EN62053-23
Installation category	Cat. III (IEC60664, EN60664)
Insulation	See Table 47 Isolation Between Inputs and Outputs (1 minute)
Dielectric strength	4 kV AC rms for 1 minute
Noise rejection CMRR	100 dB, 48...62 Hz
EMC	According to EN62052-11
Electrostatic discharge	15 kV air discharge
Immunity to radiated electromagnetic fields	Test with current: 10V/m from 80...2000 MHz Test without any current: 30V/m from 80...2000 MHz
Burst	On current and voltage measuring inputs circuit: 4 kV
Immunity to conducted disturbances	10V/m from 150 KHz...80 MHz
Surge	On current and voltage measuring inputs circuit: 4 kV; on 'L' auxiliary power supply input: 1 kV
Radio frequency suppression	According to CISPR 22
Standard compliance	
Safety	IEC60664, IEC61010-1 EN60664, EN61010-1
Metrology	EN62052-11, EN62053-21, EN62053-23, EN50470-3
Pulse output	DIN43864, IEC62053-31
Approvals	CE, cULus (E56639)
Connections	Screw-type
Cable cross-section area	Max 2.5 mm ² (14 AWG) Screw tightening torque: 0.4 N·m min/0.8 N·m max Suggested screw tightening torque: 0.5 N·m
Housing DIN	
Dimensions (WxHxD)	Module holder: 96 x 96 x 50 mm Digital and analog output modules: 89.5 x 63 x 16 mm Serial and Ethernet Communication modules: 89.5 x 63 x 20 mm
Depth behind panel, max	81.7 mm
Material	ABS, self-extinguishing: UL 94 V-0
Mounting	Panel mounting
Pollution degree	2
Protection degree, front ⁽¹⁾	IP65, UL Type 4x indoor (NEMA4x indoor), UL Type 12 (NEMA12), for use on flat surface of a Type 4X Indoor enclosure; for use on flat surface of a Type 12 enclosure.
Protection degree, screw terminals	IP20
Weight, approx	400 g (0.88 lb) (packing included)

(1) Use with 60 °C or 70 °C copper conductor. Maximum surrounding air temperature 40 °C. Install the device in a pollution degree 2 environment. Open Type Device. The terminals L1, L2, and L3 are acquired by a circuit where devices or system, including filters or air gaps, are used to control overvoltages at the maximum rated impulse withstand voltage peak of 6.0 kV. Devices or system is evaluated by using the requirements in the Standard for Transient Voltage Surge Suppressors, UL 1449. Tighten terminals to 0.79 N·m (7 lb·in). The sum of the internal power consumption of the assembled modules is not be more than 5.3 W.

Table 46 - Power Supply Specification

Attribute	Value
Auxiliary power supply	Nominal: 120/240V AC (50/60 Hz) or 120/240V DC Range: 100...240V AC (48...62 Hz)
Power consumption	6VA

Table 47 - Isolation Between Inputs and Outputs (1 minute)

	Measuring Inputs	Relay Outputs	Communication Port	Analog Outputs	Auxiliary Power Supply
Measuring Inputs	-	4 kV	4 kV	4 kV	4 kV
Relay outputs	4 kV	2 kV	4 kV	4 kV	4 kV
Communication port	4 kV	4 kV	-	4 kV	4 kV
Analog Outputs	4 kV	4 kV	4 kV	0 kV	4 kV
Aux. power supply	4 kV	4 kV	4 kV	4 kV	-

TIP The channel isolation of the current inputs is 100V AC maximum and therefore require external current transformers.

PowerMonitor 500 EtherNet/IP Device Profile

This section describes the specific CIP Objects, Instances, Attributes, and Services that are supported by the PowerMonitor™ 500 system. This information is for anyone wishing to integrate the PowerMonitor 500 system into existing or planned shop floor networks.

General

For this device profile, we use a PowerMonitor 500 unit and an EtherNet/IP communication module to provide power and energy metering data via an EtherNet/IP network. The data is accessed as instances of the device Assembly Object.

This profile documents objects that are proprietary, or in some way that is altered from their generic behavior. Standard CIP objects that are generic in their interface are documented in the EtherNet/IP specification.

Object Model and Interface

The PowerMonitor 500 system is represented by the following Object Model.

Object Class	Class Code	Instance Numbers	Number of Connections
Identity	0x0001	1	0
Assembly	0x0004	100d...108d	18

Identity Object - CLASS CODE 0x0001

The Identity Object is used to provide identification information about the device. Each node supports at least one instance of the identity object. The Identity Object is used by applications to determine which nodes are on the network. The Identity Object supports Class Attributes (Instance 0) and Instance 1.

See Section 5-2 of the CIP Common Specification for full details of this object.

Identity Object Class Attributes (Instance 0)

Attr ID	Access	Name	Data Type	Default Value
0x01	Get	Revision	UINT	1
0x02	Get	Max Instance	UINT	1
0x03	Get	Number of Instances ⁽¹⁾	UINT	1
0x06	Get	Maximum ID Number Class Attributes	UINT	7
0x07	Get	Maximum ID Number Instance Attributes	UINT	7

(1) Attribute ID 0x03 is not returned for service type Get Attribute All.

Instance 1 (PowerMonitor 500 device and Communication module)

Instance 1 represents the PowerMonitor 500 device with its EtherNet/IP module. Instance 1 of the Identity Object is the one that is browsed by RSLinx® software, relevant to the complete device, that is, the PowerMonitor 500 device and Communication module.

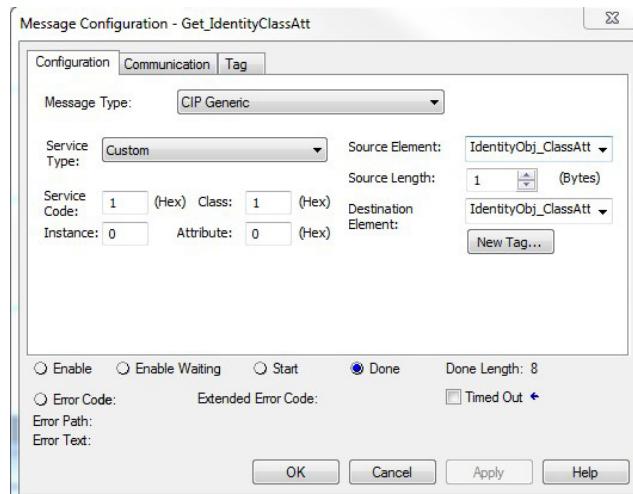
Instance 1 of the Identity Object reports the following instance-specific attribute values.

Identity Object Instance 1 Attributes

Attribute ID	Access	Name	Data Type	Value
0x01	Get	Vendor ID	UINT	1 (Rockwell Automation)
0x02	Get	Device Type	UINT	0x92 (146d)
0x03	Get	Product Code	UINT	See Product Code Values table
0x04	Get	Revision	Struct of:	Dynamic (varies with the communication firmware revision)
		Major Revision	USINT	
		Minor Revision	USINT	
0x05	Get	Status	WORD	Dynamic
0x06	Get	Serial Number	UDINT	940000000...950000000
0x07	Get	Product Name	SHORT_STRING	PowerMonitor 500

Product Code Values

Part Number	Name	Product Code	Description
1420-V1-ENT	146 - PowerMonitor 500	4	PowerMonitor 500 (240V AC, No I/O) Catalog Number 1420-V1-ENT
1420-V1P-ENT	146 - PowerMonitor 500	5	PowerMonitor 500 (240V AC, Digital I/O) Catalog Number 1420-V1P-ENT
1420-V1A-ENT	146 - PowerMonitor 500	6	PowerMonitor 500 (240V AC, Analog I/O) Catalog Number 1420-V1A-ENT
1420-V2-ENT	146 - PowerMonitor 500	7	PowerMonitor 500 (600V AC, No I/O) Catalog Number 1420-V2-ENT
1420-V2P-ENT	146 - PowerMonitor 500	8	PowerMonitor 500 (600V AC, Digital I/O) Catalog Number 1420-V2P-ENT
1420-V2A-ENT	146 - PowerMonitor 500	9	PowerMonitor 500 (600V AC, Analog I/O) Catalog Number 1420-V2A-ENT


Identity Object Services

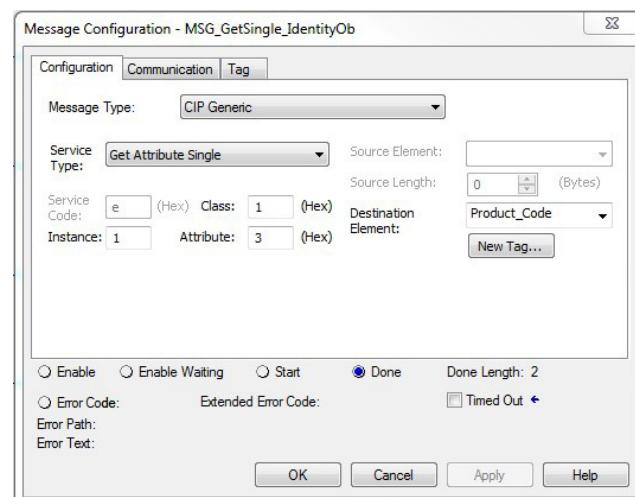
Service Code	Class/Instance Usage	Service Name
0x01	Class/Instance	Get_Attributes_All
0x0E	Class/Instance	Get_Attribute_Single

Get Attribute All Service

The Get Attribute All service returns a concatenation of all class or instance attributes.

The following example shows how to configure your message instruction configuration for the Get Attribute All Service type for the Logix Designer application. In this example, we read the class attributes (Instance 0) of the Identity Object.

Parameter	Choice	Notes
Message Type	CIP Generic	
Service Type	Custom	
Service Code	1 (hex)	1 = Get Attribute All e = Get Attribute Single
Instance	0	0 = Identity Object Class Attributes 1 = Identity Object Instance 1 Attributes
Class	1 (hex)	1 = Identity Object
Attribute	0 (hex)	This parameter is irrelevant for Get Attribute All service, but a value must be entered in this parameter for the Customer service type.
Source Element	See Notes	This element is irrelevant for the Get Attribute All service, however it must be completed for the Custom service type. In this example, the Source Element and the Destination Element are set to the same array.
Source Length	See Notes	This parameter is irrelevant for the Get Attribute All service but must be completed. The value can be less than or equal to the Source Element byte size to avoid error.
Destination Element	See Notes	This element is the first element of the controller tag that stores the data being read. The tag is an array of the applicable data type the same length as the Identity Instance. In this example, the tag is an array of five INT elements.


Get Attribute Single Service

The Get Attribute Single service returns the single attribute that is specified by the parameter Attribute ID.

Request Parameters

Parameter	Data Type	Description
Attribute ID	UINT	Identifies the attribute to be read/returned

The following example shows how to create your message instruction configuration for the Get Attribute Single Service type for the Logix Designer application. In this example, we read the Instance 1 attributes of the Identity Object.

Parameter	Choice	Notes
Message Type	CIP Generic	
Service Type	Get Attribute Single	
Service Code	e (hex)	e = Get Attribute Single
Instance	1	0 = Identity Object Class Attributes 1 = Identity Object Instance 1 Attributes
Class	1 (hex)	1 = Identity Object
Attribute	3 (hex)	This parameter is the attribute ID of the specific attribute to be read. In this example, 3 = Product Code.
Source Element	N/A	Not applicable to a Read
Source Length	N/A	Not applicable to a Read
Destination Element	See Notes	This element is the first element of the controller tag that stores the data being read. The tag is an array of the applicable data type the same length as the Attribute. In this example, the tag is an array of one INT element.

Assembly Object - CLASS CODE 0x0004

The Assembly Object collects attributes from multiple objects, allowing data to or from each object to be sent or received over a connection. Assembly Objects are used to produce and/or consume data to/from the network. An instance of the Assembly Object can both produce and consume data from the network.

Static assemblies are factory determined and cannot be modified. Members cannot be added or deleted. The implementation of the Assembly Object are static. See Section 5-5 of the CIP Common Specification for full details of this object.

Assembly Object Class Attributes

Attr ID	Access	Name	Data Type	Default Value
0x01	Get	Revision	UINT	2
0x02	Get	Max Instance	UINT	108d
0x03	Get	Number of Instances	UINT	9
0x04	Get	Optional Attributes List	STRUCT of UINT ARRAY of UINT	0x0001, {0x0004}
0x06	Get	Maximum ID Number Class Attributes	UINT	7
0x07	Get	Maximum ID Number Instance Attributes	UINT	4

Assembly Object Instance Attributes

Attr ID	Access	Name	Data Type	Default Value
0x03	Get	Data	Instance Dependent ⁽¹⁾	All member data that is packed into one array.
0x04	Get	Size	Size (in bytes) of the Data attribute	Instance Dependent ⁽¹⁾

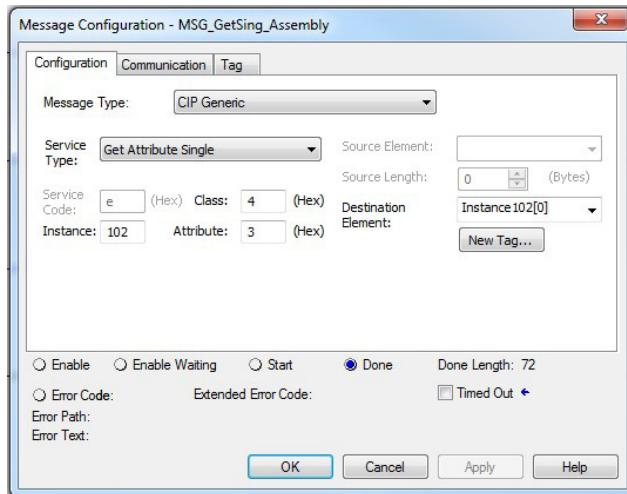
(1) See [Chapter 4](#) for more information.

Assembly Object Instances

The communication module Assembly Object supports nine instances (instances 100d to 108d). The Data attributes of these instances can be accessed via Class 1 scheduled connections and via Class 3 or UCMM unscheduled connections.

See [Appendix A, PowerMonitor 500 EtherNet/IP Device Profile](#) for more information on the content of the Assembly Instances.

Assembly Instance	Size (No. of elements)	Data Type	Data Table Description
100	20	UINT	Product Information
101	12	REAL	Real-time Voltage and Current
102	18	REAL	Real-time Power, PF, Frequency
103	12	REAL	Max Voltage and Current
104	17	REAL	Max Power, PF, Frequency
105	12	REAL	Demand Voltage and Current
106	17	REAL	Demand Power, PF, Frequency
107	18	REAL	Energy Meters
108	2	UINT	Alarm and Output Status


Assembly Object Services

Service Code	Class/Instance Usage	Service Name
0x0E	Class/Instance	Get Attribute Single

Get Attribute Single Service

The Get Attribute Single service returns the single attribute that is specified by the parameter Attribute ID.

The following example shows how to create your message instruction configuration for the Get Attribute Single Service type for the Logix Designer application. In this example, we read the Instance 102 attributes of the Assembly Object.

Parameter	Choice	Notes
Message Type	CIP Generic	
Service Type	Get Attribute Single	
Service Code	e (hex)	e = Get Attribute Single
Instance	102	This parameter is the Assembly Instance of the specific data table to be read. In this example, 102 = Real-time Power, PF, Frequency
Class	4 (hex)	4 = Assembly Object
Attribute	3 (hex)	3 = Data 4 = Size of data
Source Element	N/A	Not applicable to a Read
Source Length	N/A	Not applicable to a Read
Destination Element	See Notes	This element is the first element of the controller tag that stores the data being read. The tag is an array of the applicable data type the same length as the Attribute. In this example, the tag is an array of 18 REAL elements.

Connections

The Assembly Object supports both scheduled (Class 1) and unscheduled connections (Class 3 and UCMM). Both connections are used to access instances 100d to 108d of the Assembly Object:

- UDP - Nine Class 1 connections each to the nine Assembly Instances 100 to 108 at 100 ms RPI ran stable
- TCP - Nine Class 3 connections each to the nine Assembly Instances 100 to 108 at 200 ms RPI ran stable
- Both - UDP and TCP can run simultaneously

Heartbeat Instances

With the Assembly Instances shown earlier, the communication module also recognizes two heartbeat instances. A heartbeat instance is a virtual output instance that is specified by devices wishing to establish Input Only and Listen Only Class 1 I/O connections to the communication module. Data cannot be read from or written to a heartbeat instance. The heartbeat instance is merely a programming construct that serves to keep the connection active.

The communication module heartbeat instances are Instance 98 for the Input Only connection and Instance 99 for the Listen Only connection.

Behavior

The purpose of the Assembly Object is to act as a network interface to the PowerMonitor 500 unit data. That data is accessed by various means: Class 1 or Class 3 connections and also with UCMM messages.

Technical Notes

This section lists additional technical information about Ethernet network communication.

Parameters

For the EtherNet/IP communication module, set the following parameters by using Programming mode through the base module front panel:

- IP address
- Subnet
- Gateway
- Modbus TCP/IP port
- Address Conflict Detect (ACD)

Modbus TCP/IP

The communication module supports Modbus TCP/IP. The protocol is the same as the PowerMonitor 500 unit with RS-485 (Modbus RTU). See [Chapter 4](#) for protocol details. In this product, only one Modbus TCP/IP connection (one socket) is allowed.

The EtherNet/IP and Modbus TCP/IP do not run concurrently. If Modbus TCP/IP communication occurs, EtherNet/IP communication stops temporarily but recovers in a minute or two.

IMPORTANT We recommend that you use Modbus TCP/IP to configure or write to the PowerMonitor 500 unit and that you use Ethernet/IP to read the PowerMonitor 500 unit.

ACD

If an address conflict is detected from the communication module, then the base module displays 'ACD Found'. In that case, it is necessary to check the network configuration, resolve the problem, and then cycle control power to the power monitor to re-establish communication.

TCP/IP Port

Default EtherNet/IP ports include the following:

- UDP (implicit message): 2222 (0x08AE)
- TCP (explicit message): 44818 (0xAF12)

You can reassign the default Modbus TCP/IP port: 502 (0x01F6).

Unit Configuration - Base Firmware Revision 11 and Earlier

Configure with the Display

The PowerMonitor™ 500 unit provides menu-based configuration (programming) by using its front panel display. The programming menus let you select parameters to edit, select digits within parameters, and increase or decrease the value of each digit.

Place the unit in Programming mode by pressing Program/select (8) for about 2 seconds. The front panel displays the PASSWORD? menu page 0 in Editing mode. Enter the correct password by using the Up and Down arrows (the default password is 0) and press Program/select. The front panel then displays the CHANGE PAS menu page 10.

See the programming flowchart that begins on [page 98](#) for a view of the organization of programming menus and submenus. Each page is identified with a number, which is displayed in the top right corner. Menu page numbers end in zero, while submenu pages end in 1 through 9. For example, the Change Password page is menu 10. Likewise, the Dmd page is menu 80, and the demand interval Time page is menu 82.

While you are programming the power monitor, the display items and control buttons function one way when you are navigating between menu or submenu pages, and another way when you are editing a menu page.

Figure 29 - Front Panel Display

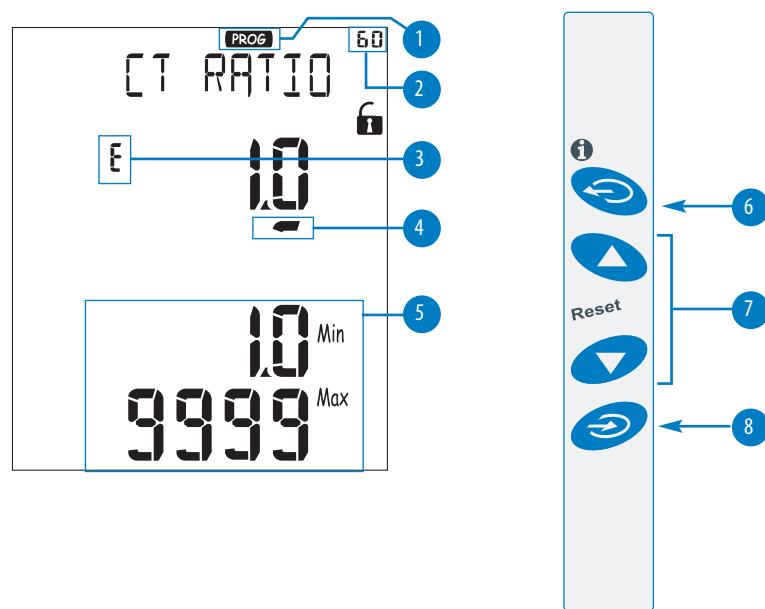
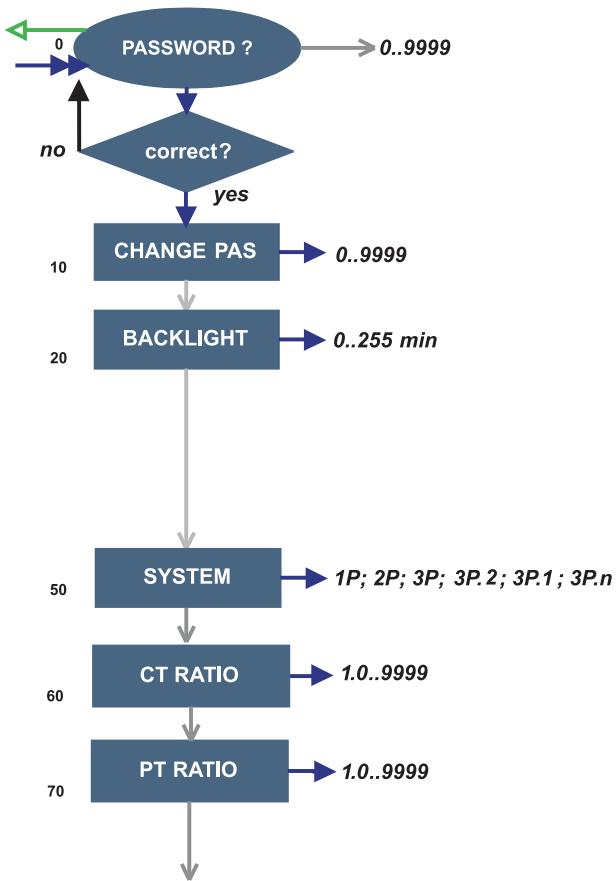


Table 48 - Front Panel Display Descriptions

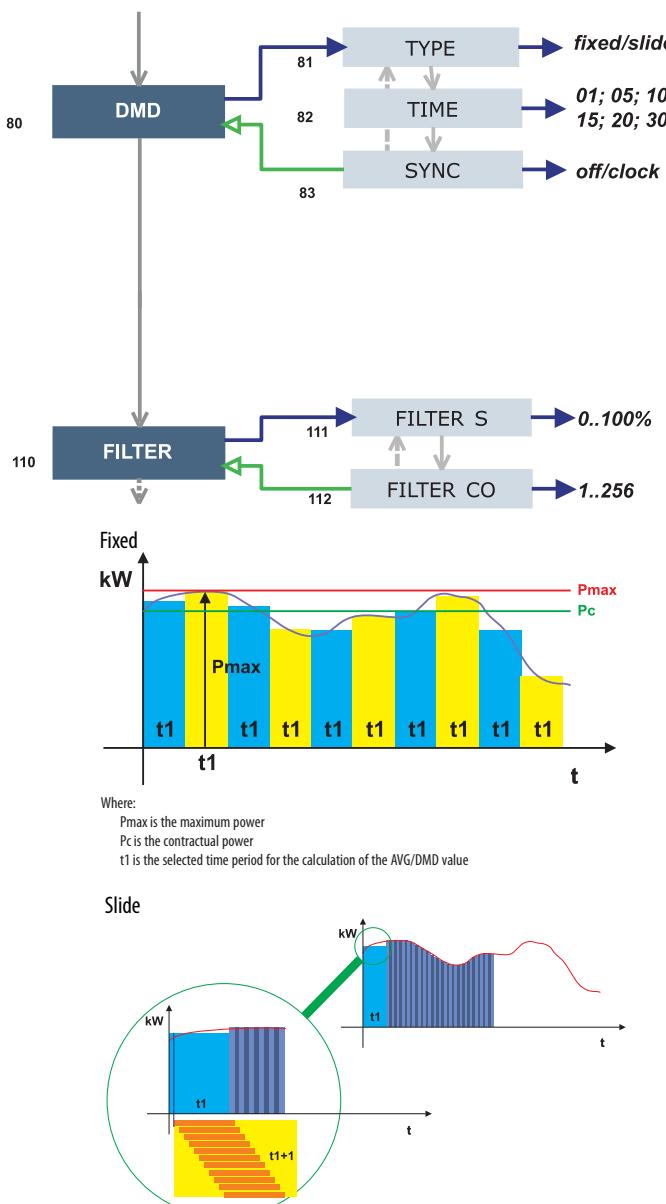
Display Item	Description	Navigating Menus	Editing a Menu
1	Programming mode indicator	Indicates programming mode.	
2	Programming menu page	Identifies the current programming menu page. See the programming flowchart that begins on page 98 .	
3	Editing mode indicator	Does not appear.	Indicates the parameter being edited.
4	Cursor	Does not appear.	Appears beneath the digit currently being edited.
5	Permitted range	Displays the permitted range of values for the selected parameter.	
6	Exit button	<ul style="list-style-type: none"> When in a menu page, exits Programming mode without saving changes. Program/select button confirms exit. When in a submenu page, exits to menu page. 	<ul style="list-style-type: none"> Moves the cursor one digit to the left. When the leftmost digit is selected, dP is indicated and you can change the decimal point and multiplier (see Edit Decimal Point and Multiplier on page 97). When held for at least 2 seconds, cancels the edit and restores the previous value of the selected parameter.
7	Up button	Selects the next higher-numbered menu or submenu page.	<ul style="list-style-type: none"> Increments the value of the digit indicated by the cursor. When dP is indicated, increments the decimal point and multiplier.
	Down button	Selects the next lower-numbered menu of submenu page.	<ul style="list-style-type: none"> Decrements the value of the digit indicated by the cursor. When dP is indicated, decrements the decimal point and multiplier.
8	Program/select button	<ul style="list-style-type: none"> Press and hold for 2 seconds to enter the Program mode. Selects a menu page for editing. When in a menu page with submenus, displays the first submenu page. After pressing the Exit button, confirms exit from Programming mode without saving changes. From End menu page 260, saves new configuration and exits Programming mode. 	Stores the new value of the selected parameter, but does not save the new configuration to the power monitor.

IMPORTANT To save programming changes, navigate to the End menu page 260 and press Program/select. To exit the Programming mode without saving any changes, press Exit and confirm by pressing Program/select. If no buttons have been pressed for 2 minutes, the power monitor exits Programming mode without saving any changes.

TIP You can make programming changes by using the PowerMonitor 500 software.


Edit Decimal Point and Multiplier

When the cursor is beneath the last digit on the left, pressing Exit (6) lets you change the decimal point and the multiplier (9) (k or M). The blinking 'dP' (decimal point) text (10) indicates this capability.


To modify the decimal point position and the multiplier, use the Up and Down arrow (7) to select the desired value.

Configuration Flowchart

The following flowchart shows the configuration menus and submenus that are accessed through the display. To navigate through the menu pages, use the up and down arrows. To enter Edit mode or to access a submenu, press the Program/select button. The menu pages available depend on your module type.

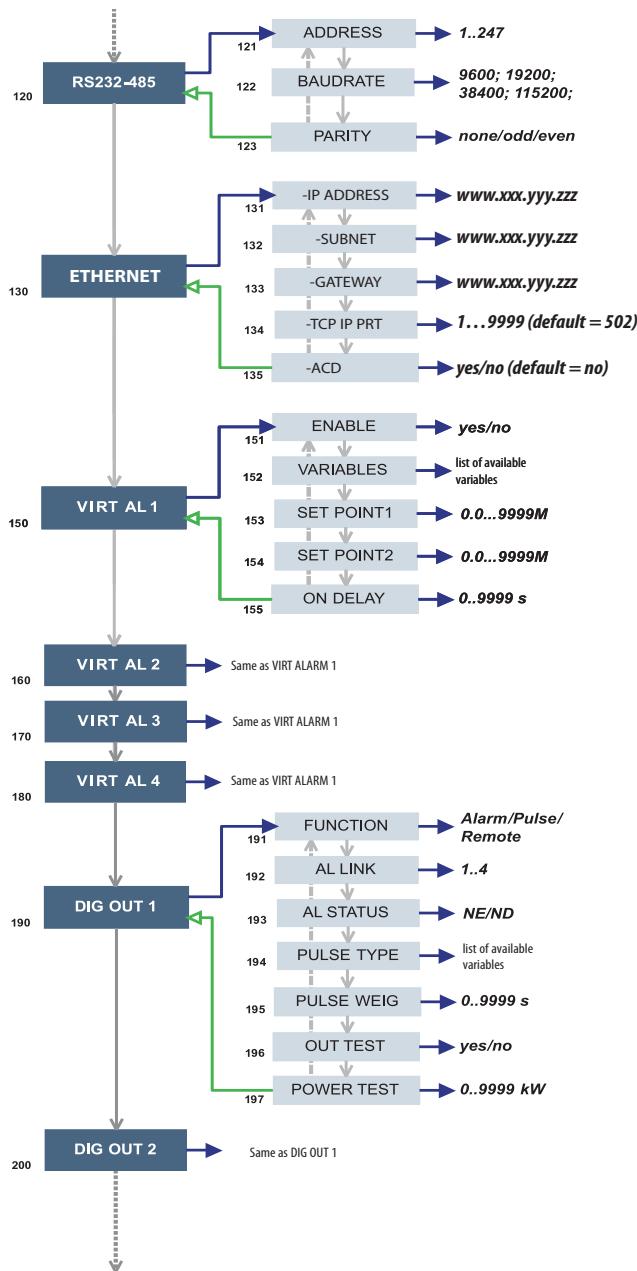
- 0 PASSWORD?: enter password by using up and down arrows to change the digit. Use the Exit button to move the cursor between digits. Press the Program/select button to confirm password. The default password is 0.
- 10 CHANGE PAS: this function lets you modify the PASS value with a new value (from 0...9999).
- 20 BACKLIGHT: adjusts backlight time from 0...255 minutes (0 = always on).
- 50 SYSTEM: this function lets you select the type of electrical system.
See pages [19...22](#) for descriptions and wiring diagrams that correspond to the system type designations, such as, 3P and 3P.n.
- 60 CT RATIO: this function lets you select the value of the CT ratio (primary/secondary ratio of the current transformer being used). Example: if the CT primary (current transformer) has a current of 300 A and the secondary a current of 5 A, the CT ratio corresponds to 60 (300 divided by 5).
- 70 PT RATIO: this function lets you select the value of the PT (VT) ratio (primary/secondary ratio of the potential/voltage transformer being used). Example: if the primary of the connected PT is 20 kV and the secondary is 100V, then the PT ratio corresponds to 200 (20,000 divided by 100). If the voltage level is such that PTs are not required and are not in place, configure the PT ratio to 1.0.

- 80 DMD: This function lets you select the calculation method of the DMD/AVG value of the selected variable.

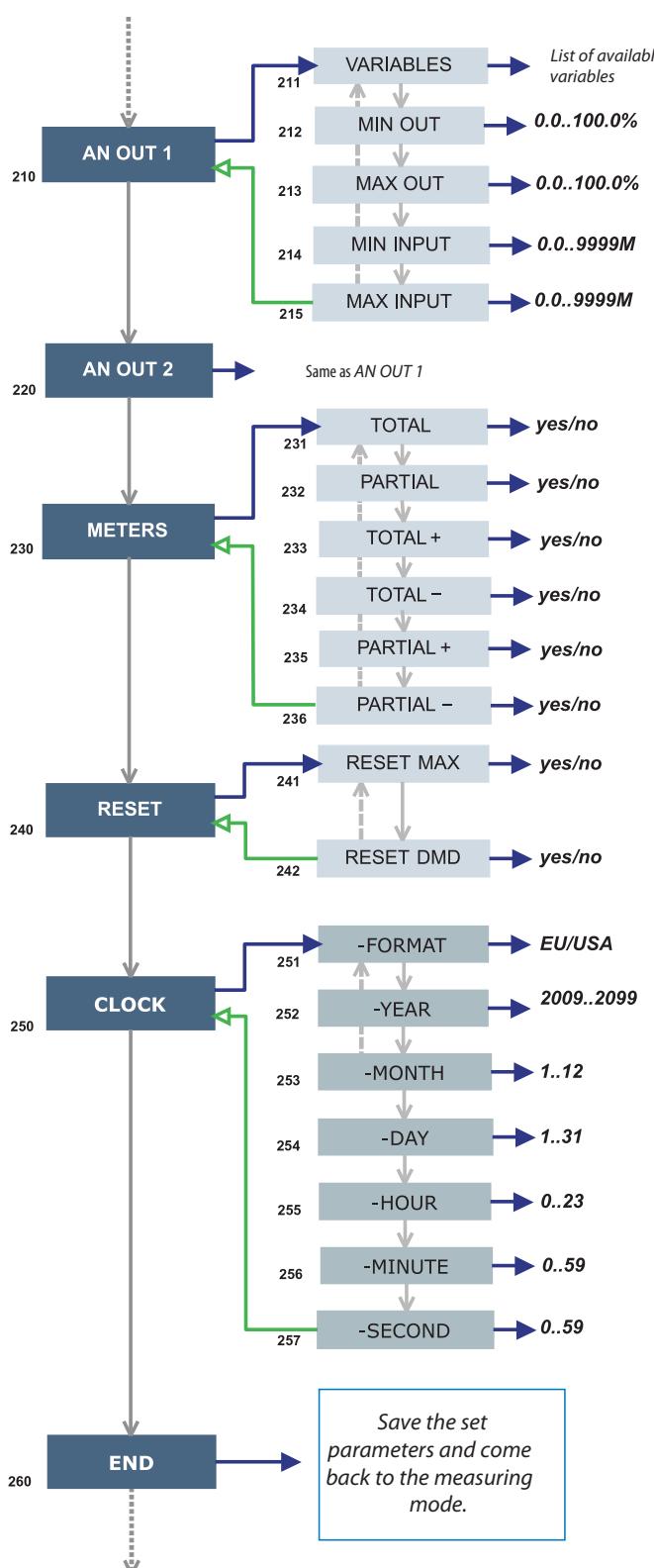
- 81 TYPE: select the type of Calculation mode to be used for the DMD/AVG calculation.

FIXED: The instrument calculates the AVG/DMD value of the measured variable over the selected interval, updates the AVG/DMD value at the end of the interval, then resets and starts a new calculation.

SLIDE: When first configured, the instrument calculates the AVG/DMD value and updates its value at the beginning after the first selected interval. After the first interval, the instrument calculates the AVG/DMD value every minute. After the calculation, the instrument generates a window whose width is the selected interval and that moves forward every minute.


- 82 TIME: select the time interval for the DMD/AVG calculation. Default is 15 minutes.
- 83 SYNC: select the Synchronization mode. That mode is the method that controls the calculation method of the average/demand according to the selected time.

- 110 FILTER: The digital filter makes it possible to stabilize the display of fluctuating measurements.


See [Digital Filtering Operation on page 35](#).

- 111 FILTER S: set the operating range (span) of the digital filter. The value is expressed as a % (filter to 0.0 means filter excluded).
- 112 FILTER CO: set the filtering coefficient of the instantaneous measures. By increasing the value, also the stability and the settling time of the measures are increased.

IMPORTANT: Some specific menus display only if the relevant modules are installed.

- 120 RS232-485: User settings for the RS-232 and RS-485 serial communication ports.
- 130 ETHERNET: User settings for the Ethernet communication port.
- 150 VIRT AL 1: This virtual alarm function lets you set the alarm parameters.
 - 151 ENABLE: enable (YES) or disable (NO) the alarm.
 - 152 VARIABLES: set the variable to be linked to the alarm.
 - 153 SET 1: set the on alarm set point of the variable.
 - 154 SET 2: set the off alarm set point of the variable.
 - 155 ON DELAY: set a delay on activation of the alarm.
- 190 DIG OUT 1: This function lets you link a virtual alarm to the digital relay output and to its working parameters.
 - 191 FUNCTION:
 - Alarm - the digital output is enabled when the associated alarm status occurs.
 - Pulse - the measured energy is retransmitted by the digital output with pulses.
 - Remote - the digital output can be controlled through a command that is sent through the serial communication port.
 - 192 AL LINK: select the virtual alarm that it has to be associated.
 - 193 AL STATUS: 'ND' (normally de-energized relay) or 'NE' (normally energized relay).
 - 195 PULSE WEIG: selects the pulse weight (kWh per pulse).
 - 196 OUT TEST: Tests the digital output. YES enables the test, No disables the test.
 - 197 POWER TEST: sets a simulated power value (kW) to test the energy pulse output. The function remains active until you exit the programming menu.

- 210 AN OUT 1: User programming of the analog outputs (0...20 mA).
- 211 VARIABLES: selects the variable to be retransmitted with the analog output.
- 212 MIN OUT: sets the value that is expressed as % of the output range (0...20 mA) that corresponds to the minimum measured value.
- 213 MAX OUT: selects the value that is expressed as % of the output range (0...20 mA) that corresponds to the maximum measured value.
- 214 MIN INPUT: minimum value of the variable input range, corresponds to the 'MIN OUTPUT' value of the analog output.
- 215 MAX INPUT: maximum value of the variable input range corresponds to the 'MAX OUTPUT' value of the analog output.
- 230 METERS: reset the ENERGY METERS. Choose among the following:
 - 231 TOTAL, 232 PARTIAL: resets all energy meters, total and partial.
 - 233 TOTAL +: resets the total meters of imported energy.
 - 234 TOTAL -: resets the total meters of exported energy.
 - 235 PARTIAL +: resets the partial meters of imported energy.
 - 236 PARTIAL -: resets the partial meters of exported energy.
- 240 RESET: Resets the MAX or dmd stored values.
- 250 CLOCK:
 - 251 FORMAT: UE, sets the European time format as 24h (00:00) or sets the time format as 12h (12:00 AM/PM).
 - 252 YEAR: sets the current year.
 - 253 MONTH: sets the current month.
 - 254 DAY: sets the current day.
 - 255 HOUR: sets the current hour.
 - 256 MINUTE: sets the current minute.
 - 257 SECOND: sets the current second.
- 260 END:
 - To save programming changes, press Program/select.
 - To exit the Programming mode without saving any changes, press Exit and confirm by pressing Program/select.
 - If no buttons are pressed for two minutes, the unit exits Programming mode without saving changes.

Notes:

Numeric
485 option 79

A

A option 79
about PowerMonitor 500 7
access information page 13
accuracy 8, 75
additional button function 10
Add-on profile 46
 available connection 48
address
 Modbus 55
 physical 55
alarm configuration 39
alarm icon 11
analog output 21
 configuration 38, 69
analog output specification 79
available connection 48

B

billing 7
button 9
 additional function 10
 description 26, 96

C

calculation formula 76
catalog number explanation 6
change
 decimal point 27, 97
 multiplier 27, 97
CIP generic 44
class 1 51
command specification 80
command 71
communication
 EtherNet/IP 8
 Modbus 8, 54
 port 7
 RS-232 8, 54
 RS-485 8, 54
communication command 43
configurable alarm 8
configuration 25, 95
 alarm 39
 analog output 38
 analog output communication 69
 relay output communication 70
 RS-232 communication 68
 RS-485 communication 68
configuration alarm 68
configuration base unit 67

configuration flow chart 28 ... 32, 98 ... 101
control 7
cost allocation 7
current transformer wiring 17

D

data table 57
data type supported 55
decimal point change 27, 97
default setting
 gateway address 33
 IP address 33
 subnet mask 33
diagram,wiring 17
digital filter programming example 35 ... 37
digital filtering operation 35
digital output specification 78
digital output wiring 21
dimension 8, 15
 optional module 15
dimension drawing 15
display 8, 11
 alarm icon 11
 feature 11
 icon 11
display description 26, 96
display specification 80

E

electronic data sheet 44, 46
energy meter specification
 specification
 energy meter 80
energy metering value 67
entering password 25, 95
EtherNet/IP communication 43
 assembly object 90
 assembly object instance 91
 byte order 43
 common service 91
 device profile 85
 explicit messaging 44
 identity object 85
 identity object instance attribute 86
 implicit messaging 51
 Modbus TCP/IP 54
 technical note 93
explicit messaging 44

F**factory installed option** module 15
 wiring 21**FactoryTalk EnergyMetrix** 7**feature** 7**filter C0** 35**filter S** 35**formula** 76**front panel** button 9, 26, 96
 indicator 9**function** 7**G****gateway address** 33**general specification** 83**geometric representation** 58**ground connection** 55**I****icon** alarm 11
 display 11**IEC vs NEMA diagram** 17**implicit messaging** 51**indication** 11**indicator** 9**information access** 13**input specification** 77**installation** 15, 16**IP address** 33**IP65** 7, 8**isolation between input and output** 84**L****line amplifier** 55**list of variable** 74 ... 75**load profiling** 7**M****main function specification** 81**menu page number** 25, 95**message setup** 44, 51**Modbus** address 55
 command 71
 communication 54
 configure alarm 68
 configure base unit 67
 data type supported 55
 energy metering value 67
 functions supported 54
 real-time metering demand 64, 65
 real-time metering value 60, 61, 62, 63
 register format 56
 register map 59
 status 73
 TCP/IP 54**monitoring** 7**multiplier change** 27, 97**O****optional module**

dimension 15

P**P option specification** 78**panel cut-out** 15**password** 25, 95**physical address** 55**port** EtherNet/IP 7
 RS-485/RS-232 7**power and power factor**

geometric representation 58

power supply 8**power supply wiring** 21**power system**

monitoring 7

power system control 7**PowerMonitor 500** about 7
 configuration 25, 95

cut-out 15

dimension 15

feature 7

function 7

installation 15

panel installation 16

wiring terminal 16

product compatibility and download center

46

product information 59**programming mode** 25, 95

25, 95

protection

IP65 7, 8

NEMA 12 8

NEMA 4X 8

pulse output 41**pulse output specification** 78

R

real-time metering demand 64, 65
real-time metering value 60, 61, 62, 63
register format 56
register map 59
relay output
 configuration 70
RS-232 54
 configuration 68
 wiring 22
RS-485 54
 configuration 68
 wiring 22

S

save change 27, 97
serial communication specification 79
shielded cable 55
single-phase 8
software
 FactoryTalk EnergyMetrix 7
specification
 485 option 79
 A option 79
 analog output 79
 command 80
 digital output 78
 display 80
 energy meter 80
 general 83
 input 77
 isolation between input and output 84
 main function 81
 P option 78
 power supply 84
 pulse output 78
 relay output 78
 RS-485 and RS-232 79
 serial communication 79
 status indicator 80
status 73
status indicator specification 80
sub-billing 7
subnet mask 33

T

three-phase 8
trigger digital output
 39
 alarm 40
 pulse 40
 remote 41

V

variable 74 . . . 75
voltage range 8

W

wiring
 analog output 21
 digital output 21
 Ethernet 23
 RS-232 22
 RS-485 22
wiring diagram 17
wiring terminal 16

Notes:

Rockwell Automation Support

Use the following resources to access support information.

Technical Support Center	Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.	https://rockwellautomation.custhelp.com/
Local Technical Support Phone Numbers	Locate the phone number for your country.	http://www.rockwellautomation.com/global/support/get-support-now.page
Direct Dial Codes	Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.	http://www.rockwellautomation.com/global/support/direct-dial.page
Literature Library	Installation Instructions, Manuals, Brochures, and Technical Data.	http://www.rockwellautomation.com/global/literature-library/overview.page
Product Compatibility and Download Center (PCDC)	Get help determining how products interact, check features and capabilities, and find associated firmware.	http://www.rockwellautomation.com/global/support/pcdc.page

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_en-e.pdf.

Rockwell Automation maintains current product environmental information on its website at <http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page>.

Allen-Bradley, CompactLogix, ControlLogix, FactoryTalk EnergyMetrix, PowerMonitor, Rockwell Automation, Rockwell Software, RSLink, RSLogix, RSNetWorx, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication 1420-UM001G-EN-P - April 2018

Supersedes Publication 1420-UM001F-EN-P - January 2017

Copyright © 2018 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.